Razvoj programske podrške za mikroupravljače Microchip PIC16

Upute za laboratorijske vježbe

Mihael Kukec Ivan Šumiga Željko Knok Nenad Breslauer

> Čakovec 2016

Autori:

dr.sc. Mihael Kukec, v. pred. mr.sc. Ivan Šumiga, v. pred. mr.sc. Željko Knok, v. pred. Nenad Breslauer, pred.

Recenzenti:

dr. sc. Oliver Jukić, prof. v.š. dr. sc. Goran Đambić

Nakladnik:

Međimursko veleučilište u Čakovcu

Za nakladnika:

doc.dr.sc. Nevenka Breslauer, prof.v.š.

ISBN 978-953-8095-03-0

Copyright © Međimursko veleučilište u Čakovcu

PREDGOVOR

Inženjeri računarstva i elektrotehnike moraju dobro poznavati sklopovlje računala u smislu razumijevanja procesa na razini izvršavanja strojnih naredbi. Kako bi se postigao taj cilj, potrebno je prikupiti mnoga znanja o samom sklopovlju i načinu na koji se razvija programska podrška za to sklopovlje.

Poseban naglasak treba staviti na mikroupravljače jer se oni nameću kao rješenja za izgradnju ugrađenih računalnih sustava za čije je oblikovanje potrebno sinergijsko spajanje znanja iz područja računarstva, elektronike i elektrotehnike.

Ove laboratorijske vježbe sastavni su dio gradiva obveznog predmeta Arhitektura računala na stručnom studiju Računarstvo Međimurskog veleučilištu u Čakovcu te predmeta Građa računala na stručnom studiju Elektrotehnika Sveučilišta Sjever.

Vježbe su po sadržaju i redosljedu izvođenja usklađene sa sadržajem i redoslijedom izvođenja predavanja i auditornih vježbi iz navedenih predmeta. Svrha laboratorijskih vježbi je da se studentima omogući svladavanje osnovnih znanja iz područja sklopovlja računala, s posebnim naglaskom na mikroupravljače.

dr.sc. Mihael Kukec, v. pred. mr.sc. Ivan Šumiga, v. pred. mr.sc. Željko Knok, v. pred. Nenad Breslauer, pred.

UPUTE ZA RAD U LABORATORIJU

Budući da se student prvi puta susreće s radom u laboratoriju za razvoj programske podrške za mikroupravljače ovdje se navode osnovne upute kojih se treba pridržavati kako bi se vježbe mogle uspješno obaviti.

Na laboratorijske vježbe je potrebno, osim uputa i programa iz pripreme, donijeti i pribor za računanje i pisanje. Posebne upute za vježbu, ako ih ima, bit će dane na početku vježbe.

Uspješno obavljene laboratorijske vježbe uvjet su za dobivanje potpisa. Na vježbama se dva ili tri puta tokom semestra obavlja provjera znanja, ovisno o izvedbenom planu predmeta za pojedinu akademsku godinu. Dobiveni bodovi ulaze u ocjenu pismenog ispita.

Materija s laboratorijskih vježbi zastupljena je kako na pismenom, tako i na usmenom dijelu ispita.

SADRŽAJ

Vježba 1.	UPOZNAVANJE S PROGRAMSKIM PAKETOM MPLAB 1
Vježba 2.	LOGIČKO OBLIKOVANJE PROGRAMA 17
Vježba 3.	ČITANJE I PISANJE PORTOVA
Vježba 4.	PALJENJE I GAŠENJE LED DIODA 26
Vježba 5.	ŠETAJUĆE SVJETLO 28
Vježba 6.	BROJENJE PRITISKOM NA TIPKU 31
Vježba 7.	BINARNI BROJAČ 34
Vježba 8.	BROJAČ IMPULSA 37
Vježba 9.	POVEZIVANJE LCD ZASLONA 40
PROGRAM	1SKI PRIMJERI S PREDAVANJA 42
Primjer 1	– Prvi program, aritmetičke operacije 42
Primjer 2	– Petlje za kašnjenje 46
Primjer 3	– Potprogrami, mehanizam poziva potprograma 48
Primjer 4	– Prekidi 52
Primjer 5	– Modul Timer
Primjer 6	– Timer pomoću prekida 57
Primjer 7	7 – Rad s 16 bitnim podacima 58
Primjer 8	– Upravljanje s LCD zaslonom HD44780 60
Primjer 9	– Upravljanje tipkovnicom i LCD zaslonom 65
Dodatak A.	LABORATORIJSKA OPREMA 71
Dodatak B.	REGISTRI MIKROKONTROLERA
Dodatak C.	SKUP INSTRUKCIJA MCU PIC16F84 84
Dodatak D.	LITERATURA 106

Vježba 1. UPOZNAVANJE S PROGRAMSKIM PAKETOM MPLAB

1.1. <u>Cilj vježbe:</u> Upoznavanje s programskim paketom MPLAB, njegovim funkcioniranjem i radnom okolinom, te osnovnim elementima.

1.2. Opis vježbe:

Na ovoj vježbi upoznati ćete se s MPLAB-ovom radnom okolinom i s osnovnim elementima MPLAB-a kao što su:

Odabir razvojnog moda rada; Stvaranje projekta; Stvaranje datoteka za glavni program; Pisanje elementarnog programa u asemblerskom jeziku; Prevođenje programa u izvršni kod; Pokretanje programa; Otvaranje prozora za simulator;

Otvaranje prozora za varijable čije vrijednosti promatramo (engl. *Watch Window*); Pohranjivanje prozora s varijablama čije vrijednosti promatramo; Podešavanje prekidnih točaka u simulatoru (engl. *Break point*).

1.3. Priprema za vježbu:

Proučiti materijale za rad na laboratorijskoj vježbi.

1.4. Rad na vježbi:

Pokretanjem programa "mplab.exe" otvara se sučelje prikazano na slici 1.1.

SI.1.1. Sučelje programskog paketa MPLAB.

Programski paket MPLAB izgleda kao i većina Windows programa. Sastoji se od izbornika (ispod nazivne trake) s opcijama File, Edit, itd., trake s alatima (područje s ikonama), radnog područja i status trake koja se nalazi na dnu prozora.

Stvaranje projekta sastoji se od sljedećih koraka:

- 1. Odabir uređaja za koji se piše program
- 2. Stvaranje projekta
- 3. Odabira alata
- 4. Dodavanje datoteka projektu
- 5. Pisanje kôda
- 6. Prevođenje kôda u izvršni oblik

ODABIR UREĐAJA

Odabir uređaja za koji se piše program obavezan je zbog toga kako bi MPLAB znao koji će alati biti korišteni za izvršavanje napisanog programa. Pritiskom na *Configure->Select Device* otvara se prozor kao na slici 1.2

105010	
16F84A	
rochip Programmer T	ool Support
PICSTART Plus	MPLAB ICD 2
PRO MATE II	🥝 PICkit 1
MPLAB PM3	
MPLAB SIM	MPLAB ICD 2 MPLAB ICE 4000
PCM16XH1	No Module

SI.1.2. Odabir razvojnog moda rada.

Na vježbama će se koristiti mikrokontroler PIC16F84A pa je pod opcijom *Device* potrebno je odabrati "PIC16F84A".

STVARANJE PROJEKTA

Sljedeći korak je stvaranje projekta pomoću Čarobnjaka. Projektom se organiziraju datoteke za prevođenje u izvršni oblik i povezivanje. Za pokretanje Čarobnjaka potrebno je odabrati *Project->Project Wizard*. U pozdravnom prozoru pritisnuti tipku *Next>* za sljedeći prozor koji omogućava odabir uređaja. Kako smo mi već odabrali uređaj ovdje nije potrebno išta mijenjati, no ipak, ako pod *Device* u prozoru *Project Wizard - Step One* nije odabrano "PIC16F84A", odabrati navedenu opciju. Pritisnuti tipku *Next>* za sljedeći prozor. Otvara se prozor *Project Wizard – Step two* kako je prikazano na slici 1.3.

ODABIR ALATA

U ovom koraku odabiru se jezični alati koji se koriste za prevođenje kôda u izvršni oblik. Prozor. Prozor u kojem se odabiru jezični alati prikazan je na slici 1.3.

Project Wizard		2
Step Two: Select a langu	age toolsuite	چر [®]
Active Toolsuite:	Microchip MPASM Toolsuite	•
⊢ Toolsuite Content	8	
MPASM Asse MPLINK Obje MPLIB Librar	embler (mpasmwin.exe) ect Linker (mplink.exe) an (mplib.exe)	
C:\Program Files	\Microchip\MPASM Suite\MPAsmWin.exe	Browse
Help! My S	uite Isn't Listed!	Show all installed toolsuites.
	< Back Next >	Cancel Help

SI.1.3. Odabir jezičnih alata projekta

Odabrati "Microchip MPASM Toolsuite" kao *Active Toolsuite*. U popisu *Toolsuite Contents* vidljivi su "MPASM" i "MPLINK". Pritiskom na svaku od tih opcija u *Location* može se vidjeti njihova staza. U slučaju kada je MPLAB IDE instaliran u podrazumijevani direktorij staze do datoteka su sljedeće:

MPASM assembler: C:\Program Files\Microchip\MPASM Suite\MPAsmWin.exe

MPLINK linker: C:\Program Files\Microchip\MPASM Suite\MPLink.exe

MPLIB librarian: C:\Program Files\Microchip\MPASM Suite\MPLIB.EXE

U slučaju kada staze do datoteka nisu točne ispravite ih pritiskom na tipku *Browse* odabirom datoteka.

Kada ste završili pritisnite tipku *Next>* za prelazak u sljedeći prozor.

IMENOVANJE PROJEKTA

U trećem koraku stvaranja projekta otvara se prozor kao što je prikazano na slici 1.4. Projektu se daje ime i položaj na čvrstom disku. Ime projekta upisuje se u polje *Project Name* a staza na čvrstom disku postavlja se pritiskom na tipku *Browse*.

Step Three: Name your project		B
Project Name		
LabVjezbaU1		
Project Directory		
D:\Lab\vj01		Browse
·		
	10 <u>1</u>	

SI.1.4. Imenovanje projekta

Kada ste završili pritisnite tipku *Next>* za prelazak u sljedeći prozor.

Četvrti korak (Project Wizard – Step Four) omogućava dodavanje datoteka projektu. Datoteke će biti kasnije dodane projektu pa u prozoru Project Wizard – Step Four nije potrebno išta mijenjati. Pritisnuti tipku *Next>* za prelazak u sljedeći prozor koji je prikazan na slici 1.5

Project Wizard		×
333	Summary	
E B	Click 'Finish' to create the project with these parameters.	
VOX.	Project Parameters	7
16	Device: PIC16F84A	
R C	Toolsuite: Microchip MPASM Toolsuite	
1-16	File: D:\Lab\vj01\LabVjezba01.mcp	
	A new workspace will be created, and the new project added to that workspace.	
	K Back Finish Cancel Help	

Sl. 1.5 Završetak stvaranja projekta

U prozoru prikazanom na slici 1.5 pregledati da li su ispisane opcije ispravne i pritisnuti tipku *Finish* za završetak stvaranja projekta.

Ovim je otvoren novi prazan projekt. Na radnom površini pojavljuje se prozor projekta kao što je prikazano na slici 1.6. Vidljivo je da je projekt prazan, tj. ne sadrža ikakve datoteke.

SI. 1.6 Novi projekt

DODAVANJE DATOTEKA PROJEKTU

Kako bi se datoteka s asemblerskim kôdom mogla dodati projektu, treba je stvoriti i pohraniti na čvrsti disk računala. Datoteka se stvara opcijom *File->New* kojom se otvara prazan prozor uređivača teksta s nazivom "Untitled". U ovom trenutku nije potrebo upisivati asemblerski kôd nego je dovoljno pohraniti datoteku pomoću *File->Save* As na čvrsti disk računala (bez obzira što će datoteka biti prazna). Odabirom opcije *File-Save* As otvara se prozor za pohranjivanje datoteke kako je pokazano na slici 1.7. Direktorij u koji se sprema datoteka mora biti direktorij projekta. U gornjem primjeru na slici 1.4 direktorij projekta je "D:\LAB\vj01" pa je pod opcijom *Save in* prozora na slici 1.7 potrebno odabrati taj direktorij. U polje *File name* upisuje se ime datoteke.

ave As		?)
Save in: 🔯	vj01 🔽 🔾 🗘	• 🖽 🏷
ile name:	vjezba01	Save
ile name: ave as type:	vjezba01 Assembly Source Files (*.asm;*.as;*.inc;*.s)	Save Cancel

Sl. 1.7 Pohranjivanje datoteke

Kada je ime datoteke upisano i direktorij ispravno odabran pritisnuti tipku Save za pohranjivanje datoteke. Ovim je stvorena prazna datoteka u koju će se upisivati asemblerski kôd. U nazivnoj traci uređivača asemblerskog kôda sada se nalazi puna staza datoteke. Kako bi mogli raditi s novostvorenom datotekom potrebno je razvojnoj okolini (MPLAB-u) reći da je upravo stvorena datoteka dio našeg projekta.

SI. 1.8 Dodavanje datoteke projektu

Novostvorena datoteka dodaje se projektu pritiskom na *Source Files* desnom tipkom miša u prozoru projekta kako je pokazano na slici 1.8. U lebdećem izborniku koji se otvara pritisnuti na opciju *Add Files*.

dd Files to F	Project	?
Look in: [yi01 💌	G 🤌 📂 🎞 •
Vjezba01.	asm	
File name:		Open

SI. 1.9 Odabir datoteke koja se dodaje projektu

U prozoru za odabir datoteke koji se otvara (slika 1.9) odabrati novostvorenu datoteku. U ovom primjeru je to datoteka "D:\LAB\vj01\vjezba01.asm¹". Kada je datoteka odabrana pritisnuti tipku *Open* za dodavanje datoteke projektu.

Lab¥jezba01.mcw	_ 🗆 ×
E Lab¥jezba01.mcp*	1
🗄 Source Files	
vjezba01.asm	
Header Files	
- Object Files	
Library Files	
- Linker Scripts	
Other Files	

SI. 1.10 Prozor projekta s dodanom datotekom

Slika 1.10 pokazuje prozor projekta "LabVjezba01" kojem je dodana datoteka "vjezba01.asm". Stvorene promjene pohraniti pomoću opcije *File->Save Workspace*.

¹Datoteke s asemblerskim kôdom imaju ekstenziju "asm" 2016 7

PISANJE KÔDA (PISANJE PROGRAMA)

Tek nakon što obavimo sve prije navedene radnje možemo početi pisati program. Napisati ćemo jednostavan program koji je dan u nastavku.

```
_____
 Visoka Elektrotehnicka Skola s pravom javnosti
 Kolegij: Gradja Racunala, laboratorijske vjezbe
 Program početno pali diode na RB1 i RB3 a gasi na RB2
 Crvena dioda svijetli uvijek, dok se stanja zelene i žute
 diode izmjenjuju ovisno o tome je li tipkalo pritisnuto ili nije.
 Početno stanje je da zelena dioda ne svijetli a žuta svijetli.
 Pritiskom na tipkalo zelena dioda svijetli a žuta je ugašena.
 ______
 Postavljnje MCU i kofiguracijska rijec
            PROCESSOR 16F84A
             #include "p16f84a.inc"
            ERRORLEVEL -224
            ___CONFIG _CP_OFF & _XT_OSC & _PWRTE ON & WDT OFF
            org 0x0
                        ; pocetak na pocetak :)
  _____
 Postavljnje PORTAB i PORTA
  _____
            clrf PORTB ; postavi 0x0 na PORTB
bsf STATUS, RP0 ; odabir Bank 1
movlw B'11110001' ; RB0 je ulaz, ostali su izlaz
movwf TRISB ^ 0x80 ; postavi 0xF1 u TRISB
            movlw B'00011111' ; 0x1F u W
movwf TRISA ^ 0x80 ; svi pinovi na PORTA ulazni
 _____
 Pali LED diode na RB1 i RB3, pocetno stanje
 _____
            bcfSTATUS, RP0; odabir Bank 0bcfPORTB, 1; upali diodu na RB1 (CRVENA svijetli uvijek)bsfPORTB, 2; ugasi diodu na RB2 (ZELENA ne svijetli)bcfPORTB, 3; upali diodu na RB3 (ZUTA svijetli)
   Ukljuci pull-upove na PORTB
                       _____
            bsf STATUS, RPO ; odabir Bank 1
            bcf OPTION REG, NOT RBPU ; omoguci interni pull-up
: _____
; Kada je tipkalo pritisnuto 🛛 : pali RB2, gasi RB3
 Kada tipkalo NIJE pritisnuto : pali RB3, gasi RB2
 bcf
                  STATUS, RPO ; odabir Bank 0
petlja
            nop
            btfsc PORTB, 0 ; test tipkala
goto p_zut ; idi na p_zut
            nop
```

p_zel nop	bsf	porte, 3	; gasi ZUTU	
	bcf goto	PORTB, 2 petlja	; pali ZELENU ; idi na petlja	
p_zut	nop bsf bcf goto	PORTB, 2 PORTB, 3 petlja	; ugasi ZELENU ; upali ZUTU ; idi na petlja	
	end			

SI. 1.11 Kôd programa

Nakon što se program upiše u prozoru uređivača kôda, naredbom *Project->Build All* asemblerski kôd programa prevodi se u izvršni oblik. Rezultati prevođenja ispisuju se u *Output* prozoru pod jahačem *Build* kao što je pokazano na slici 1.12.

Out	put _ O ×
Build	Version Control Find in Files MPLAB SIM
Make Exec Load BUILI	e: The target "D:\Lab\vj01\vjezba01.o" is out of date. uting: "C:\Program Files\Microchip\MPASM Suite\MPAsmWin.exe" /q /p16F84A "vjezba01.as ed D:\LAB\vj01\vjezba01.COD D SUCCEEDED: Mon Mar 21 20:36:23 2005

SI.1.12. Prozor s porukom o prijevodu asemblerskog programa.

Posljednja rečenica u prozoru je najvažnija jer pokazuje je li prevađanje bilo uspješno ili nije. "BUILD SUCCEEDED" je poruka koja govori o uspješnosti prevađanja, te nam govori da nije bilo pogrešaka.

U slučaju kada se pojavi pogreška, dvostruki pritisak na poruku o pogrješci u "Build" prozoru automatski vas prebacuje u asemblerski program u redak za koji prevodioc misli da sadržava grješku.

MPSIM SIMULATOR

Proces pisanja programa često se naziva razvojnim ciklusom. Rijetko se sve faze razvoja od zamisli do implementacije izvrše bez grješke. Češće, kôd se piše, ispituje i mijenja kako bi se dobila aplikacija koja zadovoljava početne zahtijeve. Slika 1.13 pokazuje razvojni ciklus aplikacije od zamisli do gotovog proizvoda.

SI. 1.13. Razvojni ciklus programa

Simulator je dio MPLAB-ove radne okoline koji omogućava bolji uvid u rad mikrokontrolera. Kroz simulator možemo promatrati trenutne vrijednosti varijabli, vrijednosti u registrima i status na pinovima portova. U slučaju kada je program jednostavan (kao u danom primjeru), simulator nije od prevelike važnosti no ispravljanje logičkih progrješaka bez simulatora bilo bi znatno teže ili gotovo nemoguće. Simulator nam može biti od velike pomoći sa složenijim programima koji uključuju mjerače vremena, različita stanja gdje se nešto događa i drugi slični zadaci (osobito s matematičkim operacijama). Simulacija, kao što joj i samo ime govori označava "simulaciju rada mikrokontrolera". Kao što mikrokontroler obavlja instrukcije jednu po jednu tako je i simulator zamišljen – programer se kreće kroz program korak-po-korak (redak-po-

Vježba 1. Upoznavanje s programskim paketom mplab

redak) i promatra što se događa s podacima unutar mikrokontrolera. Kad se završi s pisanjem programa potrebno je pomoću simulatora provjeriti da li program obavlja zadani zadatak. Potrebno je provjeriti da li program radi upravo ono što je određeno zahtijevima tj. zadatkom. Tek kada se pomoću simulatora uvjerimo da program radi upravo ono što je određeno u zadatku tada se prelazi na ispitivanje programa u stvarnoj situaciji.

Kako bi se mogao koristiti simulator, razvojnoj okolini (MPLAB-u) je potrebno reći koji simulator mislimo koristiti. Na vježbama će se koristiti simulator ugrađen u razvojnu okolinu MPLAB. Odabir simulatora vrši se u izborniku *Debugger->Select Tool.* U izborniku koji se otvara potrebno je odabrati *MPLAB SIM (Debugger->Select Tool->MPLAB SIM)*.

Nakon prevođenja kôda u izvršni oblik, prvu stvar koju koju je potrebno učiniti, kao u pravoj situaciji, je resetiranje mikrokontrolera opcijom izbornika *Debugger->Reset->Processor Reset* ili pritiskom na tipku F6. Resetiranje mikrokontrolera rezultira postavljanjem postavljanje programskog brojila na nulu što se može vidjeti u statusnoj liniji (pc:0x00). U uređivaču kôda, zelena strelica koja pokazuje instrukciju koja će se izvršiti, postavlja se na prvu instrukciju programa.

Jedna od glavnih karakteristika simulatora je mogućnost pregleda vrijednosti registara mikrokontrolera tijekom izvođenja programa. Ti registri se još nazivaju specijalni funkcijski registri, ili SFR registri. Prozor sa SFR registrima otvara se opcijom *View->Special Function Registers*. Osim SFR registara, korisno je imati uvid u podatkovne registre. Prozor sa podatkovnim registrima može se otvoriti odabirom *View->File Registers*.

U slučaju kada se u programu koriste varijable, moguće je promatrati promjenu njihovih vrijednosti tijekom izvođenja programa pomoću prozora koji se otvara opcijom *View->Watch*.

Sl. 1.14. Ispitivanje ispravnosti rada programa

Vježba 1. Upoznavanje s programskim paketom mplab

Slika 1.14 pokazuje proces ispitivanje programa koji se izvodi. Ispitivanje programa je zahtijevan proces jer iziskuje dobro poznavanje rada mikrokontrolera. Program se ispituje izvođenjem instrukciju po instrukciju opcijom *Debugger->Step Into* (ili tipka F7). Po izvođenju svake instrukcije u prozorima specijalnih funkcijskih registara, podatkovnih registara i kôda programa provjerava se da li se mikrokontroler nalazi u željenom stanju, što znači da vrijednosti svih registara moraju biti jednake onima koje programer očekuje nakon izvršavanja instrukcije. Analiza programa koja se provodi na ovakav način može otkriti pogrješke u pisanju samog kôda koje su zadovoljile sintaksnu analizu no logički su krive te daju pogrješne rezultate, no osim toga, ovakvom analizom otkrivaju se i grješke u logičkom osmišljanju programa, što znači da slijed izvođenja instrukcija nije dobro osmišljen i da neće dati željeni rezultat.

Kao što je rečeno u gornjem dijelu teksta, naredba simulatora koja omogućava pokretanje programa korak po korak je *Debugger->Step Into*. Tu istu naredbu mogli bi aktivirati pomoću tipkovnice s F7 tipkom (drugim riječima svaka značajna naredba ima svoju odgovarajuću tipku na tipkovnici). Koristeći tipku F7, program se izvršava korak-po-korak. U prozoru SFR registara možemo promatrati kako W registar (akumulator) dobiva vrijednost 0xF1 nakon izvođenja treće instrukcije kôda sa slike 1.11.

ALATNE TRAKE

Alatne trake MPLAB IDE su:

- 1. Standard (slika 1.15)
- 2. Project Manager (slika 1.16)
- 3. Debug

SI. 1.15 Alatna traka standard

Alati alatne trake Standard su (redom s lijeva na desno)

- 1. New File Otvaranje novog prozora uređivača kôda
- 2. Open File Otvaranje datoteke u uređivaču kôda
- 3. Save File Pohranjivanje kôda trenutno aktivnog prozora uređivača
- 4. Cut Izreži
- 5. Copy Kopiraj
- 6. Paste Zalijepi
- 7. Print File Ispiši datoteku
- 8. Find Traži
- 9. Help Pomoć

	Project Manager	×
	💣 🖨 🖬 🖏 🍅	۲
SI. 1	I.16 Alatna traka Pro	oject Manager

Alati alatne trake Project Manager su (redom s lijeva na desno):

- 1. New project Stvaranje novog projekta
- 2. Open project Otvaranje prije stvorenog projekta
- 3. Save Workspace Pohranjivanje radne površine
- 4. Build options Opcije prevođenja programa u izvršni oblik
- 5. Find In Project Files Traži po datotekama projekta
 - Prevođenje u izvršni oblik
- 6. Make
 7. Build All
- Prevođenje u izvršni oblik

Sl. 1.17 Alatna traka Debug

U alatnoj traci Debug nalaze se alati za ispitivanje rada programa. Alati (redom s lijeva na desno) su:

1. Run	Pokreće program. Prije pokretanja program je potrebno prevesti u izvršni oblik
2. Halt	Zaustavlja izvođenje programa
3. Animate	Izvodi program automatski instrukciju po instrukciju brzinom koja
	omogućava praćenje izvođenja programa
4. Step Into	Izvodi jednu instrukciju sljedeći pozive potprograma
5. Step Over	Izvodi jednu instrukciju preskačući pozive potprograma.
	Cijeli potprogram tretira kao jednu instrukciju.
6. Reset	Postavlja programsko brojilo na prvu instrukciju
	tj. vraća izvođenje programa na početak

OSTALE OPCIJE MPLAB RAZVOJNE OKOLINE

Disasemblirani ispis programa (Izbornik: View->Disassembly Listing)

Disasemblirani ispis pomaže pri ispitivanju ispravnosti rada programa te otklanjanju pogrješaka. U disasmebliranom ispisu sva simbolička imena u kôdu i labele zamijenjeni su njihovim brojčanim ekvivalentima i adresama. Uz disasemblirani kôd ispisani su i izvornik komentari koji olakšavaju praćenje kôda.

<u>Pregled programske memorije</u> (Izbornik: *View->Program Memory*)

Pregled programske memorije daje uvid u kôd programa na način na koji ga vidi mikrokontroler. Moguć je uvid u izvšni oblik programa u heksadecimalnom zapisu (*Opcode Hex*), strojni kôd popraćen disasembliranim kôdom (*Machine*) i simbolički kôd (*Symbolic*)

Pregled podatkovnih registara mikrokontrolera (Izbornik: View->File registers)

Podatkovni registri su radna memorija mikrokontrolera, mjesto gdje su pohranjene sve varijable programa. Pregled podatkovnih registara je nužan za ispitivanje ispravnosti rada programa i pronalaženje pogrješaka. Pregled je moguć u heksadecimalnom zapisu (*Hex*) i simbolički (*Symbolic*).

<u>Pregled specijalnih funkcijskih registara</u> (Izbornik: *View->Special Function Registers*)

Specijalni funkcijski registri su jednako važni kao i podatkovni registri. Vrijednosti u njima određuju ponašanje mikrokontrolera te uvelike utječu na izvođenje programa. Važno je osigurati da vrijednosti u njima u svakom trenutku budu ispravne.

Podešavanje radnog takta mikrokontrolera

Radni takt mikrokontrolera podešava se u prozoru koji se otvara pomoću izbornika *Debugger->Settings*. Prozor koji se otvara nalazi se na slici 1.18.

Osc / Trace	Break Options
Processor Frequency	Units:
Frace Options ✓ Trace Enable	Break on Trace Buffer Full

SI. 1.18 Podešavanje radnog takta mikrokontrolera

Željeni radni takt potrebno je upisati u polje *Processor Frequency* te odabrati jedinicu pod *Units*. Na slici 1.18 radni takt procesora je 20MHz.

Mjerenje vremena

Mnoge primjene mikrokontrolera uključuju vremenski generirane signale. Kako bi se uvjerili da je određeni dio kôda za izvođenje potrošio neku količinu vremena koristimo štopericu (engl. stopwatch) ugrađenu u MPLAB IDE. Štoperica se pokreće odabirom opcije *Debugger>StopWatch.* Prozor koji se otvara odabirom ove opcije pokrazan je na slici 1.19.

Vježba 1. Upoznavanje s programskim paketom mplab

	Stopwatch	Total Simulated
Synch Instruction Cycles	0	0
Zero Time (uSecs)	0.000000	0.000000
Processor Frequency (MH:	z)	20.000000

SI. 1.19 Mjerenje vremena

Vježba 2. LOGIČKO OBLIKOVANJE PROGRAMA

2.1. <u>Cilj vježbe:</u> Upoznavanje s logičkim oblikovanjem programa, uvođenje algoritamske razrade zadatka kroz blok dijagrame.

2.2. Opis vježbe:

Vježba upoznaje studente s algoritamskim načinom razmišljanja. Pokazuje dekompoziciju zadanog problema na manje problemske cjeline, identificiranje potrebnih alata i postupaka kako bi se pojedina problemska cjelina razriješila te određivanje ispravnog slijeda primjene alata i postupaka kako bi se dobio zadovoljavajući rezultat te kompozicija dobivenih dijelova u cjelovito rješenje problema. Za prikazivanje algoritama koristiti će se blok dijagrami.

1.3. Priprema za vježbu:

Proučiti materijale za rad na laboratorijskoj vježbi.

1.4. Rad na vježbi:

SIMBOLI ZA DIJAGRAME ODVIJANJA OPERACIJA PROGRAMA

SI. 2.1 Simboli dijagrama odvijanja operacija programa

SI. 2.2 Simboli dijagrama odvijanja operacija programa

PRIMJER 1 : Postupak pisanja programa u razvojnoj okolini MPLAB.

Rastavljanje problema na cjeline (podijeli pa vladaj):

- 1. Pokretanje razvojne okoline MPLAB
- 2. Odabir uređaja za koji se piše program
- 3. Stvaranje projekta
- 4. Dodavanje datoteka projektu
- 5. Pisanje kôda
- 6. Prevođenje kôda u izvršni oblik
- 7. Otklanjanje pogrješaka u programu i ispitivanje ispravnosti rada
- 8. Učitavanje programa u mikrokontroler
- 9. Ispitivanje ispravnosti rada

Identificiranje alata i postupaka

Problem	Alat/sredstvo	Postupak
Pokretanje razvojne okoline MPLAB	GUI sučelje MS Windows OS-a	Pritisak lijevom tipkom miša na ikonu MPLAB IDE
Odabir uređaja za koji se piše program	MPLAB IDE: Configure->Select Device izbornik	Pritisak lijevom tipkom miša na opciju izbornika
Stvaranje projekta	MPLAB IDE: Čarobnjak za stvaranje projekta	Pokrenuti Čarobnjak za stvaranje projekta. Postupati po uputama Čarobnjaka.
Dodavanje datoteke projektu	MPLAB IDE: Opcije izbornika <i>File->New</i> i <i>File->Save A</i> s	Pritisak lijevom tipkom miša na opcije izbornika te upisivanje potrebnih podataka
Pisanje kôda	MPLAB IDE: uređivač teksta	Pisanje kôda unošenjem s tipkovnice
Prevođenje u izvršni oblik	MPLAB IDE: prevodilac i povezivač	Pokretanje opcije <i>Project-</i> >Build All
Otklanjanje sintaksnih pogrješaka	MPLAB IDE: Izlaz procesa prevođenja i uređivač kôda.	Uređivačem kôda ispraviti pogrješke prijavljene u izlazu procesa prevođenja
Ispitivanje ispravnosti rada programa	MPLAB IDE: Debugger	Pregledom programa instrukciju po instrukciju utvrditi ispravnost rada
Učitavanje programa u MCU	Program za učitavanje izvršnog kôda u MCU	Učitati izvršni kôd u MCU
Ispitivanje ispravnosti rada u stvarnoj situaciji	Stvarna okolina u kojoj će MCU raditi	Ispitivanjem rada MCU unutar sustava odrediti ispravnost rada

Dijagram toka operacija:

SI. 2.3 Dijagram toka pisanja programa u MPLAB IDE

PRIMJER 2 : Pretvaranje decimalnog broja u binarni

Identificiranje alata i postupaka

Problem	Alat/sredstvo	Postupak
Pretvaranje decimalnog broja u binarni	Dijeljenje	Dijeljenje s 2 dok se ne dobije rezultat 0. Zapisivanje ostataka. Rezultat pretvorbe su zapisani ostaci pročitani redoslijedom obrnutim od zapisivanja.

Dijagram toka operacija:

SI. 2.4 Diagram toka pretvorbe dekadskog broja u binarni

PRIMJER 3 : Logičko oblikovanje programa sa slike 1.11.

Zadatak:

Program početno pali diode na RB1 i RB3 a gasi na RB2. Crvena dioda svijetli uvijek, dok se stanja zelene i žute diode izmjenjuju ovisno o tome je li tipkalo pritisnuto ili nije. Početno stanje je da zelena dioda ne svijetli a žuta svijetli. Pritiskom na tipkalo zelena dioda svijetli a žuta je ugašena. Diode su spojene na sljedeći način:

- Crvena: RB1
- Zelena : RB2
- Žuta : RB3

Rastavljanje problema na manje problemske cjeline:

- 1. Postavljanje MCU (konfiguracijska riječ)
- 2. Postavljanje načina rada PORTAB i PORTA
- 3. Postavljanje početnog stanja (Pali diode na RB1 i RB3)
- 4. Određivanje stanja tipkala (pritisnuto/nije pritisnuto)
- 5. Promjena stanja na diodama spojenim na RB2 i RB3

Identificiranje alata i postupaka:

Problem	Alat/sredstvo	Postupak
Postavljanje MCU	Konfiguracijska riječ	Konfiguracijskom riječi postaviti MCU
Postavljanje načina rada PORTA i PORTB	TRISA i TRISB registar određuju način rada PORTA i PORTB, respektivno.	Postaviti TRISA i TRISB tako da pinovi portova odgovaraju namjeni prema shemi (RB1, RB2 i RB3 su izlazni, RB0 je ulazni)
Postavljanje početnog stanja	PORTB	RB1 i RB3 postavi na 0, RB2 postavi na 1.
Određivanje stanja tipkala	PORTB, pin 0; btfsc instrukcija	Ispitati stanje RB0 pomoću btfsc instrukcije
Promjena stanja na didodama spojenim na RB2 i RB3.	PORTB, pin 2 i 3 (RB2 i RB3)	Instrukcijama bsf i bsf promjeniti stanje na RB2 i RB3

Dijagram toka operacija:

SI. 2.5 Dijagram toka programa sa slike 1.11

Vježba 3. ČITANJE I PISANJE PORTOVA

3.1. <u>Cilj vježbe:</u> Upoznati se s postupkom programiranja mikrokontrolera PIC16F84, te načinom uporabe njegovih ulaza i izlaza.

3.2. <u>Opis vježbe:</u>

Bilo što da se radi s mikrokontrolerom koristi se njegove U/I (engl. *Input/Output (I/O)*) portove, bilo za prikupljanje podataka ili za upravljanje nekim drugim uređajima, tj. neki od pinova koriste se kao ulazi, a neki kao izlazi. Microchipov PIC16F84 posjeduje dva U/I porta s ukupno 13 U/I linija [port A (5 pinova) i port B (8 pinova)]. Funkcija pojedinih U/I pinova određuje se

"TrisA" i "TrisB" registrima. Nakon reseta mikrokontrolera svi pinovi su podešeni kao ulazni tj. svi bitovi u tris registru su postavljeni na "1". Ukoliko se želi neki pin na portu proglasiti za izlazni potrebno je u tris registru na tom mjestu izbrisati bit (postaviti na "0"). U memorijskoj mapi U/I registri (PortA i PortB) nalaze se u nultoj banci (engl. *Bank0*) na lokacijama 0x05 i 0x06, a registri smjera (TrisA i TrisB) u prvoj banci (engl. *Bank1*) na lokacijama 0x85 i 0x86. Odabir banke kojoj se želi pristupiti vrši se bitovima RP1 (šesti bit) i RP0 (peti bit) u STATUS registru. Omogućavanje internog pull-up-a vrši se brisanjem sedmog bita u OPTION_REG registru u banci 1.

3.3. <u>Priprema za vježbu:</u>

Napisati program koji će u sklopu sa slike 3.1. raditi sljedeće:

- postaviti pinove porta A RA0, RA1, RA2 i RA3 kao izlazne, a pin RA4 kao ulazni;
- postaviti pinove porta B RB2, RB3, RB4 i RB5 kao ulazne, a pinove RB0, RB1, RB6 i RB7 kao izlazne;
- provjeravati stanja tipkala na pinovima RB2, RB3, RB4 i RB5, te prenositi ta stanja na pinove RA0, RA1, RA2 i RA3, a komplementirana stanja na pinove RB0, RB1, RB6 i RB7;
- ponavljati cjelokupni postupak.
- Napomena: Stanja pina RB2 prenose se na RA0 i RB0; stanja pina RB3 prenose se na RA1 i RB1; Stanja pina RB4 prenose se na RA2 i RB6; Stanja pina RB5 prenose se na RA3 i RB7. Potrebno je omogućiti interni pull-up.

3.4. Rad na vježbi:

Pokrenuti program MPLAB i u njemu napraviti projekt pod nazivom "vj3.pjt". Program iz pripreme spremiti u datoteku "vj3.asm" i uključiti ju u projekt.

Izgraditi projekt i pokrenuti proces prevođenja projekta, te otkloniti pogreške u slučaju da se pojave.

Nakon uspješnog prevođenja asemblerske datoteke potrebno je pokrenuti simulator. U simulatoru provjeriti rad programa i ustanoviti je li rad ispravan.

Kad se ustanovi ispravan rad potrebno je prijeći na prebacivanje programa u mikrokontroler pomoću programiralice.

Nakon programiranja mikrokontrolera potrebno je spojiti shemu sa slike 3.1. i provjeriti rad sklopa.

Slika 3.1 Čitanje i pisanje portova

Vježba 4. PALJENJE I GAŠENJE LED DIODA

4.1. <u>Cilj vježbe:</u> Upoznati se s postupkom programiranja mikrokontrolera PIC16F84, te načinom uporabe njegovih portova i spajanja LED dioda.

4.2. Opis vježbe:

Na ovoj vježbi upoznat ćete se s načinom programiranja mikrokontrolera PIC16F84, te načinom uporabe portova mikrokontrolera. Također ćete se upoznati s tipičnim načinom spajanja elemenata na ulaz i izlaz portova mikrokontrolera, te konfiguracijom oscilatora. Diode su spojene tako da svijetle kad je na pinovima niska razina. Ovo je napravljeno ovako iz razloga što je struja poniranja po pinu veća nego struja izvora po pinu. Pinovi koriste unutarnji pull-up koji je slabiji nego onaj koji bi bio izveden izvana (npr. Vdd preko otpornika 4k7), ali koji u ovom slučaju nije potreban. Koristi se oscilator od 4MHZ, no mogao bi i neki drugi jer brzina u ovom slučaju nije bitna. Crvena dioda svijetli uvijek, dok se stanja zelene i žute diode izmjenjuju ovisno o tome je li tipkalo pritisnuto ili nije. Početno stanje je da zelena dioda ne svijetli a žuta svijetli. Pritiskom na tipkalo zelena dioda svijetli a žuta je ugašena.

4.3. Priprema za vježbu:

Napisati program koji će u sklopu sa slike 4.1. raditi sljedeće:

- postaviti pinove RB4, RB5 i RB6 porta B kao izlazne, a sve ostale kao ulazne;
- upaliti LED diode na pinovima RB4 i RB6;
- omogućiti interni pull-up;
- napraviti petlju koja će provjeravati je li tipkalo pritisnuto:
 - ako je pritisnuto onda je potrebno ugasiti LED diodu na pinu RB6 i upaliti diodu na pinu RB5;
 - ako nije pritisnuto onda je potrebno ugasiti LED diodu na pinu RB5 i upaliti diodu na pinu RB6.

4.4. Rad na vježbi:

Pokrenuti program MPLAB i u njemu napraviti projekt pod nazivom "vj4.pjt". Program iz pripreme spremiti u datoteku "vj4.asm" i uključiti ju u projekt.

Izgraditi projekt i pokrenuti proces prevođenja projekta, te otkloniti pogreške u slučaju da se pojave.

Nakon uspješnog prevođenja asemblerske datoteke potrebno je pokrenuti simulator. U simulatoru provjeriti rad programa i ustanoviti je li rad ispravan.

Kad se ustanovi ispravan rad potrebno je prijeći na prebacivanje programa u mikrokontroler pomoću programiralice.

Nakon programiranja mikrokontrolera potrebno je spojiti shemu sa slike 4.1. i provjeriti rad sklopa.

Slika 4.1 Sklop za paljenje i gašenje svijetlećih dioda

Vježba 5. ŠETAJUĆE SVJETLO

5.1. <u>Cilj vježbe:</u> Upoznati se s postupkom programiranja mikrokontrolera PIC16F84, te načinom uporabe njegovih portova, kao i izradom potprograma za čekanje.

5.2. <u>Opis vježbe:</u>

Na ovoj vježbi upoznat ćete se s načinom programiranja mikrokontrolera PIC16F84, te načinom uporabe portova mikrokontrolera. Također ćete se upoznati s tipičnim načinom spajanja elemenata na ulaz i izlaz portova mikrokontrolera, te konfiguracijom oscilatora. Diode su spojene tako da svijetle kad je na pinovima visoka razina. Koristi se oscilator od 4MHZ, što znači da vrijeme jednog instrukcijskog ciklusa iznosi 1µs. Svjetlo se prenosi s jedne diode na drugu, počevši od diode na pinu RB0 pa sve do one na pinu RB7, nakon čega se vraća opet do one na pinu RB0. Kako bi se prenošenje svjetla moglo vidjeti potrebno je programski izvesti potprogram za čekanje koji će pojedinu diodu držati upaljenom određeni broj milisekundi.

5.3. <u>Priprema za vježbu:</u>

Napisati program koji će u sklopu sa slike 5.1. raditi sljedeće:

- postaviti pinove RB1, RB2, RB3, RB4, RB5, RB6 i RB7 porta B kao izlazne;
- postaviti pin RA2 kao ulazni;
- upaliti LED diodu na pinu RB0;
- pričekati oko V ms i ugasiti diodu na pinu RB0 te upaliti diodu na pinu RB1;
- pričekati oko V ms i ugasiti diodu na pinu RB1 te upaliti diodu na pinu RB2;
- ponoviti postupak za sve diode do one na pinu RB7;
- pričekati oko V ms i ugasiti diodu na pinu RB7 te upaliti diodu na pinu RB6;
- pričekati oko V ms i ugasiti diodu na pinu RB6 te upaliti diodu na pinu RB5;
- ponoviti postupak za sve diode do one na pinu RB0;
- ponavljati cjelokupni postupak.

NAPOMENA: Ovo je samo primjer jednog mogućeg načina prenošenja svjetla. Svjetlo se ovdje prenosi s diode na diodu od diode RB0 do diode RB7 te natrag na RB0. **Svaki student u grupi izraditi će pomicanje svjetla na način kako je određeno u njegovom zadatku**.

5.4. Rad na vježbi:

Pokrenuti program MPLAB i u njemu napraviti projekt pod nazivom "vj5.pjt".

Program iz pripreme spremiti u datoteku "vj5.asm" i uključiti ju u projekt.

Izgraditi projekt i pokrenuti proces prevođenja projekta, te otkloniti pogreške u slučaju da se pojave.

Nakon uspješnog prevođenja asemblerske datoteke potrebno je pokrenuti simulator.

U simulatoru provjeriti rad programa i ustanoviti je li rad ispravan.

Kad se ustanovi ispravan rad potrebno je prijeći na prebacivanje programa u mikrokontroler pomoću programiralice.

Nakon programiranja mikrokontrolera potrebno je spojiti shemu sa slike 5.1. i provjeriti rad sklopa.

Zadaci za 5. laboratorijsku vježbu iz Građe Računala

- Svjetlo se prenosi tako da u svakom trenutku svijetli samo jedna dioda počevši od diode spojene na RB7 do diode spojene na RB0. Nakon završenog ciklusa, svjetlo se postavlja opet na RB7 i ide do RB0. Redoslijed paljenja dioda je RB7, RB6, ...RB1, RB0, RB7, RB6,...RB0,... V = 100ms
- Svjetlo se prenosi tako da u svakom trenutku svijetli samo jedna dioda počevši od diode spojene na RB0 do diode spojene na RB7. Nakon završenog ciklusa, svjetlo se postavlja opet na RB0 i ide do RB7. Redoslijed paljenja dioda je RB0, RB1, RB2,...RB6, RB7, RB0, RB1, ..., RB7, RB0,.. V = 100ms
- Svjetlo se prenosi na način da se postupno pale sve diode redom od RB0 do RB7 s vremenskim razmakom od V ms. Kada se upali posljednja dioda RB7, pricekati V ms, ugasiti sve diode, pričekati V ms i ponoviti ciklus. V = 75ms
- 4. Svjetlo se prenosi na način da se postupno pale sve diode redom na RB7 do RB0 s vremenskim rzamakom od V ms. Kada se upali posljednja dioda RB0, pričekati V ms, ugasiti sve diode, pričekati V ms i ponoviti ciklus. V = 50ms
- 5. Svjetlo se prenosi tako da u svakom trenutku svijetli samo jedna dioda na način da se pale prvo diode na parnim pinovima MCU, pa nakon toga na neparnim pinovima MCU. Red paljenja dioda je RB0, RB2, RB4, RB6, RB1, RB3, RB5, RB7, RB0, RB2, ... V = 30ms
- Svjetlo se prenosi tako da u svakom trenutku svijetli samo jedna dioda na način da se pale prvo diode na neparnim pinovima MCU, pa nakon toga na parnim pinovima MCU. Red paljenja dioda je RB1, RB3, RB5, RB7, RB0, RB2, RB4, RB6, RB1, RB3, RB5, RB7, RB0, RB2, ... V = 50ms
- Upaliti sve diode. Gasiti redom jednu po jednu diodu počevši od RB0 do RB7. Redoslijed gašenja dioda je RB0, RB1, RB2, ..., RB7, nakon toga, pričekati V ms, upaliti sve diode, pričekati V ms te ponoviti postupak. V = 60ms
- Upaliti sve diode. Gasiti redom jednu po jednu diodu počevši od RB7 do RB0. Redoslijed gašenja dioda je RB7, RB6, RB5, ..., RB0, nakon toga, pričekati V ms, upaliti sve diode, pričekati V ms te ponoviti postupak. V = 70ms
- Ugasiti diode RB0 do RB3, upaliti diode RB4 do RB7. Redom, istovremeno upaliti diodu RB0 i ugasiti diodu RB4, pričekati V ms, upaliti diodu RB1, ugasiti diodu RB5, pričekati V ms, upaliti diodu RB2, ugasiti diodu RB6, pričekati V ms, upaliti diodu RB3, ugasiti diodu RB7. Pričekati V ms, te ponoviti cijelokupni postupak. V = 80ms
- Ugasiti diode RB0, RB2, RB4, RB6, sve ostale upaliti. Istovremeno upaliti diodu RB0 i ugasiti RB1, pričekati V ms, upaliti diodu RB2 i ugasiti diodu RB3, pričekati V ms, nastaviti postupak do dioda RB6 i RB7, pričekati V ms, te ponoviti cijelokupni postupak. V = 90ms
- 11. Svjetlo se prenosi na način da su u svakom trenutku upaljene 2 susjedne diode (RB0 i RB1, RB1 i RB2, RB2 i RB3, itd.) Na ovaj način prenijeti svjetlo s diode RB0 na diodu RB7. Nakon svakog prenošenja svjetla pričekati V ms. Ponavljati postupak. V = 85ms
- Svjetlo se prenosi na način da su u svakom trenutku upaljene 3 susjedne diode (RB0, RB1, RB2; RB1, RB2, RB3; RB2, RB3, RB4, ...) Na ovaj način prenijeti svjetlo s diode RB0 na diodu RB7. Nakon svakog prenošenja svjetla pričekati V ms. Ponavljati postupak. . V = 105ms
- 13. Ugasiti sve diode. Istovremeno paliti RB0 i RB7, pričekati V ms, ugasiti sve diode, paliti RB1 i RB6, pričekati V ms, ugasiti sve diode itd. sve do RB3 i RB4. Ugasiti sve diode. Pričekati V ms. Ponoviti cijeli postupak. V = 130ms
- Ugasiti sve diode. Istovremeno paliti RB0 i RB4, pričekati V ms, ugasiti sve diode, upaliti RB1 i RB5, pričekati V ms, ugasiti sve diode itd. sve do RB4 i RB7. Pričekati V ms. Ponoviti cijeli postupak. V = 140ms
- 15. 10. invertirani zadatak. Izraditi zadatak na način da se diode pale i gase suprotno od onog u 10. zadatku. V = 170ms
- 11. invertirani zadatak. Izraditi zadatak na način da se diode pale i gase suprotno od onog u 11. zadatku. V = 180ms
- 17. 12. invertirani zadatak. Izraditi zadatak na način da se diode pale i gase suprotno od onog u 12. zadatku. V = 120ms
- 13. invertirani zadatak. Izraditi zadatak na način da se diode pale i gase suprotno od onog u 13. zadatku. V = 195ms

Slika 5.1 Sklop za šetajuće svjetlo

Vježba 6. BROJENJE PRITISKOM NA TIPKU

6.1. <u>Cilj vježbe:</u> Upoznati se s postupkom programiranja mikrokontrolera PIC16F84, te načinom kontroliranja rada mikrokontrolera vanjskim djelovanjem, kao i osnovnim matematičkim operacijama.

6.2. Opis vježbe:

Mikrokontroler se često koristi u sklopovima kao brojač. Jedan jednostavan primjer je brojenje pritiskom na tipku. Na sličan način se može implementirati i brojenje na neki drugi način. Primjerice, brojenje impulsa iz nekog davača. Na ovoj vježbi bit će prikazano brojenje do 15, za što su potrebna četiri bita. Implementacija za brojenje većih vrijednosti je slična (koristi se samo više izlaza). Rezultat u će se prikazivati na četiri diode koje su spojene na port B prema slici 6.1. Diode moraju odražavati stanje brojača na način da upaljena dioda označava "1" a ugašena "0". Tako bi se broj 10 na didodama prikazao na način da su diode RB5 i RB7 upaljene, a sve ostale ugašene.

Potrebno je voditi računa i o tome da tipkalo treba neko vrijeme za preklapanje, te da se ne može promatrati kao ON-OFF sklopka koja bi trenutno preklopila. Većina tipkala ima vrijeme potrebno za preklapanje ispod 10 ms. Tipkalo T1 povećava vrijednost brojača za 1. Kada vrijednost brojača postane veća od 15 postaviti brojač na 0. Tipkalo T2 smanjuje vrijednost brojača za 1. Kada vrijednost brojača postane manja od 0 postaviti vrijednost brojača na 15.

6.3. Priprema za vježbu:

Napisati program koji će u sklopu sa slike 6.1. raditi sljedeće:

- postaviti pinove porta B RB4, RB5, RB6 i RB7 kao izlazne, a pinove RB2 i RB3 kao ulazne;
- omogućiti interni pull-up;
- provjeravati stanje tipkala na pinu RB2 i RB3;
- ako nije pritisnuto onda provjeravaj kada bude pritisnuto;
- ako je tipkalo pritisnuto onda treba uvećati/smanjiti stanje na portu B za jedan i pričekati 10ms;
- provjeravati je li tipkalo na pinu RB2/RB3 otpušteno;
- ako nije onda čekati da se otpusti tipkalo;
- ako je otpušteno onda pričekati 10 ms i provjeriti je li još uvijek otpušteno;
- ako nije onda pričekati da bude otpušteno;
- ako je otpušteno onda se vratiti na provjeru kada će biti ponovo pritisnuto.

NAPOMENA: Ovo je samo primjer načina brojenja. **Svaki student u grupi izraditi će** vježbu na način kako je određeno u njegovom zadatku. <u>Pojedinačni zadaci za studente</u> definiraju **razliku** s obzirom na izvorni zadatak. Sve što nije definirano u pojedinačnom zadatku izvodi se prema izvornom zadatku.

6.4. Rad na vježbi:

Pokrenuti program MPLAB i u njemu napraviti projekt pod nazivom "vj6.pjt".

Program iz pripreme spremiti u datoteku "vj6.asm" i uključiti ju u projekt.

Izgraditi projekt i pokrenuti proces prevođenja projekta, te otkloniti pogreške u slučaju da se pojave.

Nakon uspješnog prevođenja asemblerske datoteke potrebno je pokrenuti simulator.

U simulatoru provjeriti rad programa i ustanoviti je li rad ispravan.

Kad se ustanovi ispravan rad potrebno je prijeći na prebacivanje programa u mikrokontroler pomoću programiralice.
Nakon programiranja mikrokontrolera potrebno je spojiti shemu sa slike 6.1. i provjeriti rad sklopa.

- 1. Tipkalo T1 uvećava vrijednost brojača za 1. Tipkalo T2 smanjuje vrijednost brojača za 1. (zadatak jednak izvornom zadatku)
- 2. Tipkalo T1 uvećava vrijednost brojača za 2. Tipkalo T2 smanjuje vrijednost brojača za 2.
- 3. Tipkalo T1 uvećava vrijednost brojača za 1. Tipkalo T2 smanjuje vrijednost brojača za 2.
- 4. Tipkalo T1 uvećava vrijednost brojača za 2. Tipkalo T2 smanjuje vrijednost brojača za 1.
- 5. Broji se od 0 do 4. Kada se u brojaču nalazi vrijednost 0 sve su diode ugašene; kada se u brojaču nalazi vrijednost 1 upaljena je jedna dioda, 2 -> upaljene su 2 diode, itd..
- 6. Tipkalo T1 uvećava vrijednost brojača za 2. Tipkalo T2 koristi se za postavljanje brojača na 0.
- Tipkalo T2 koristi se za uvećavanje brojača za vrijednost 5. U slučaju kada vrijednost postane veća od 15, oduzeti 15 od brojača (u brojaču je vrijenost 14, pritisne se tipka T2 : 14 + 5 = 19 (preljev), 19-15 = 4, u brojač staviti 4 i nastaviti program.
- Tipkalo T2 koristi se za smanjivanje brojača za vrijednost 5. U slučaju kada vrijednost postane manja od 0, dodati 15 brojaču (u brojaču je vrijenost 3, pritisne se tipka T2 : 3 - 5 = -2 (preljev), -2+15 = 13, u brojač staviti 13 i nastaviti program.
- 9. Na diodama prikazati samo parne brojeve. Kada je u brojaču neparni broj, ugasiti sve diode.
- 10. Na diodama prikazati samo neparne brojeve. Kada je u brojaču parni broj, upaliti sve diode.

Vježba 7. BINARNI BROJAČ

7.1. <u>Cilj vježbe:</u> Upoznati se s postupkom programiranja mikrokontrolera PIC16F84, te načinom brojenja i prikazom rezultata brojenja.

7.2. Opis vježbe:

Jedan od načina korištenja mikrokontrolera je korištenje u svrhu brojenja. Jednostavan primjer je binarno brojenje. Na sličan način se može implementirati i brojenje na neki drugi način. Na ovoj vježbi bit će prikazano brojenje do 15, za što su potrebna četiri bita. Implementacija za brojenje većih vrijednosti je slična (koristi se samo više izlaza). Rezultat će se prikazivati na četiri diode koje su spojene na port B prema slici 7.1. Vrijednost brojača uvećavat će se za jedan svaki interval vremena. Izraditi potprograme koji će imati kašnjenje od 100ms. Kašnjenje se izvodi pomoću mjerača vremena (engl. timer) TMR0.

7.3. Priprema za vježbu:

Napisati program koji će u sklopu sa slike 7.1. raditi sljedeće:

- postaviti pinove porta B RB0, RB1, RB2 i RB3 kao izlazne;
- omogućiti interni pull-up i postaviti predjelilo za TMR0;
- svaki vremenski interval uvećavati stanje na portu B za jedan.
- Sav kôd smjestiti u jednu .asm datoteku. Koristiti programske direktive za odabir dijela kôda koji se koristi

NAPOMENA: Ovo je samo primjer načina brojenja. **Svaki student u grupi izraditi će** vježbu na način kako je određeno u njegovom zadatku. <u>Pojedinačni zadaci za studente</u> definiraju **razliku** s obzirom na izvorni zadatak. Sve što nije definirano u pojedinačnom zadatku izvodi se prema izvornom zadatku.

7.4. Rad na vježbi:

Pokrenuti program MPLAB i u njemu napraviti projekt pod nazivom "vj7.pjt".

Program iz pripreme spremiti u datoteku "vj7.asm" i uključiti ju u projekt.

Izgraditi projekt i pokrenuti proces prevođenja projekta, te otkloniti pogreške u slučaju da se pojave.

Nakon uspješnog prevođenja asemblerske datoteke potrebno je pokrenuti simulator.

U simulatoru provjeriti rad programa i ustanoviti je li rad ispravan.

Kad se ustanovi ispravan rad potrebno je prijeći na prebacivanje programa u mikrokontroler pomoću programiralice.

Nakon programiranja mikrokontrolera potrebno je spojiti shemu sa slike 7.1. i provjeriti rad sklopa.

Zadaci za 7. laboratorijsku vježbu iz Građe Računala

- Broji se od 0 do 4 i unatrag (od 4 do 0). Kašnjenje za pozitivan smjer je 80ms a za negativan 150ms. Kada se u brojaču nalazi vrijednost 0 sve su diode ugašene; kada se u brojaču nalazi vrijednost 1 upaljena je jedna dioda, 2 -> upaljene su 2 diode, itd..
- 2. Broji se od 0 do 15. Za brojenje do 8 koristiti kašnjenje od 100ms, a dalje koristiti kašnjenje od 200ms.
- 3. Korak brojenja u pozitivnom smjeru je 4 (broji se 0, 4, 8, 12) a u negativnom 2 (12, 10, 8, ..., 0). Postupak brojenja stalno ponavljati.
- 4. Na diodama prikazati samo parne brojeve. Kada je u brojaču neparni broj, ugasiti sve diode.
- 5. Na diodama prikazati samo neparne brojeve. Kada je u brojaču parni broj, upaliti sve diode.
- Broji se od 0 do 8. Početi od 100ms kašnjenja. Vrijeme kašnjenja povećavati za 25ms za vrijednost brojača od 0 do 4 za svaku promjenu brojača. Vrijeme kašnjenja smanjivati za 25ms za vrijednost brojača od 5 do 8 za svaku promjenu brojača.
- 7. Broji se od 0 do 4 i unatrag (od 4 do 0). Početi od kašnjenja 40ms. Kašnjenje za pozitivan smjer uvećavati za 40ms na svaku promjenu brojača. Kašnjenje za negativan smjer smanjivati za 40ms na svaku promjenu brojača. Kada se u brojaču nalazi vrijednost 0 sve su diode ugašene; kada se u brojaču nalazi vrijednost 1 upaljena je jedna dioda, 2 -> upaljene su 2 diode, itd..
- 8. Jednako kao i 5. zadatak s razlikom da ovdje stanje dioda u svakom trenutku mora biti invertirano, tj. kada u 5. zadataku dioda svijetli u ovom ne svijetli.
- 9. Jednako kao i 6. zadatak s razlikom da ovdje stanje dioda u svakom trenutku mora biti invertirano, tj. kada u 6. zadataku dioda svijetli u ovom ne svijetli.
- 10. Jednako kao i 7. zadatak s razlikom da ovdje stanje dioda u svakom trenutku mora biti invertirano, tj. kada u 7. zadataku dioda svijetli u ovom ne svijetli.
- 11. Jednako kao i 1. zadatak s razlikom da ovdje stanje dioda u svakom trenutku mora biti invertirano, tj. kada u 1. zadataku dioda svijetli u ovom ne svijetli.
- 12. Jednako kao i 2. zadatak s razlikom da ovdje stanje dioda u svakom trenutku mora biti invertirano, tj. kada u 2. zadataku dioda svijetli u ovom ne svijetli.
- 13. Jednako kao i 3. zadatak s razlikom da ovdje stanje dioda u svakom trenutku mora biti invertirano, tj. kada u 3. zadataku dioda svijetli u ovom ne svijetli.
- 14. Jednako kao i 4. zadatak s razlikom da ovdje stanje dioda u svakom trenutku mora biti invertirano, tj. kada u 4. zadataku dioda svijetli u ovom ne svijetli.

Slika 7.1 Sklop za binarni sat

Vježba 8. BROJAČ IMPULSA

8.1. <u>Cilj vježbe:</u> Upoznati se s postupkom programiranja mikrokontrolera PIC16F84, te načinom korištenja prekida u svrhu brojenja impulsa.

8.2. Opis vježbe:

U sve više aplikacija u životu koriste se brojači impulsa. Od primjene za brojenje broja putnika, broja posjetilaca, broja automobila, ... U industriji je također nezamisliv rad bez brojača impulsa. Najočitiji primjer je brojenje komada određenih artikala kako bi se imao uvid u proizvodnju odnosno potrošnju. Sljedeći primjer je brojenje impulsa u telefonskim centralama. Uglavnom, primjera ima svuda oko nas i svakim danom ih je sve više. Sam brojač impulsa može se promatrati kroz tri dijela. Prvi dio je davač impulsa, a zatim slijedi dio za brojenje, pamćenje i za pripremu za prikazivanje (PIC16F84), te na kraju dio za prikaz informacije (7-segmentni pokaznici). Za prikaz rezultata brojenja koriste se dva 7-segmentna pokazivača koji su spojeni paralelno na port B, a jedino su zajedničke katode spojene na port A (svaka na drugi pin).

8.3. Priprema za vježbu:

Napisati program koji će u sklopu sa slike 8.1. raditi sljedeće:

- postaviti pinove porta A i porta B prema slici 8.1.;
- brojiti impulse na pinu RB7 (na rastući brid);
- u prekidnoj rutini povećati sadržaj registra u kojem su spremljene jedinice za jedan, provjeriti je li vrijednost dostigla iznos 10, te u slučaju da je dostigla postaviti registar koji sadrži jedinice na nulu a vrijednost registra koji sadrži desetice povećati za jedan;
- kada vrijednost broja u registru desetica dostigne vrijednost 10 onda se on postavlja na vrijednost nula i brojanje počinje ispočetka;
- tokom izvršavanja glavnog programa potrebno je naizmjence prikazivati vrijednosti jedinica i desetica na 7-segmentnim pokazivačima.

NAPOMENA: Ovo je samo primjer načina brojenja. **Svaki student u grupi izraditi će** vježbu na način kako je određeno u njegovom zadatku. <u>Pojedinačni zadaci za studente</u> definiraju **razliku** s obzirom na izvorni zadatak. Sve što nije definirano u pojedinačnom zadatku izvodi se prema izvornom zadatku.

8.4. <u>Rad na vježbi:</u>

Pokrenuti program MPLAB i u njemu napraviti projekt pod nazivom "vj8.pjt".

Program iz pripreme spremiti u datoteku "vj8.asm" i uključiti ju u projekt.

Izgraditi projekt i pokrenuti proces prevođenja projekta, te otkloniti pogreške u slučaju da se pojave.

Nakon uspješnog prevođenja asemblerske datoteke potrebno je pokrenuti simulator.

U simulatoru provjeriti rad programa i ustanoviti je li rad ispravan.

Kad se ustanovi ispravan rad potrebno je prijeći na prebacivanje programa u mikrokontroler pomoću programiralice.

Nakon programiranja mikrokontrolera potrebno je spojiti shemu sa slike 8.1. i provjeriti rad sklopa.

Zadaci za 8. laboratorijsku vježbu iz Građe Računala

- 1. Broji se heksadecimalno od 0 do FF.
- 2. Broji se heksadecimalno od FF do 0.
- Izraditi program za testiranje 7 segmentnog pokaznika. Lijevi pokaznik neka je P1 a desni P2. Na pritisak tipkala T1 s čekanjem od 190 ms izvesti sljedeće: Upali segmente P1-A, P2-A, čekaj, ugasi sve, Upali P2-B, P2-C, čekaj, ugasi sve, Upali P2-D, P1-D, čekaj, gasi sve, upali P1-E, P1-F, čekaj, ugasi sve, upali P1-G, P2-G, čekaj, ugasi sve, ponovi prethodnu proceduru.
- 4. Broji se decimalno od 0 do 9. Na oba pokaznika je u svakom trenutku ista vrijednost.
- 5. Broji de od 0 do 99. Pritisak na tipkalo koji traje do 200ms broji se kao jedan, a na svaki duzi pritisak brojac se jednokratno povecava za 10.
- 6. Broji de od 99 do 0. Pritisak na tipkalo koji traje do 200ms broji se kao jedan, a na svaki duzi pritisak brojac se jednokratno smanjuje za 10.
- 7. Broji se decimalno od 9 do 0. Na oba pokaznika je u svakom trenutku ista vrijednost.
- 8. Na jednom pokazniku brojiti od 0 do 9 a na drugom od 9 do 0. Kada je na prvom vrijednost 0 na drugom je 9, kada je na prvom vrijednost 1 na drugom je 8, kada je na prvom vrijednost 2 na drugom je 7, ...
- 9. Izraditi program za testiranje 7 segmentnog pokaznika. Na pritisak tipkala T1 s čekanjem od 190 ms izvesti paljenje svih segmenata od A do G na oba pokaznika na način: upali segmente A, čekaj, ugasi sve, upali segmente B, čekaj, ugasi sve, upali segmente C, čekaj, ugasi sve, ...
- 10. Broji se od -9 do 9.
- 11. Nakon pritiska tipkala T1, pokrenuti brojač koji će brojiti od 0 do FF, vrijednost brojača s čekanjem od 150ms prikazati na pokaznicima. Nakon prvog pritiska tipkala sklop bez daljnjih pritisaka na tipkalo broji do FF. Svaka vrijednost se prikazuje, čeka se 150 ms, te se prelazi na prikaz nove vrijednosti.
- 12. Po uključivanju sklopa bez pritisaka na tipkalo započinje se brojenje od 0 do FF. Vrijednost brojača s čekanjem od 100ms prikazati na pokaznicima. Pritiskom na T1 brojenje se zaustavlja. Ponovnim pritiskom na T1 brojenje se nastavlja.
- 13. Broji se heksadecimalno od -F do F.
- 14. Broji se od 0 do 99. Svaki pritisak na tipkalo broji se kao 5.
- 15. Broji se od 99 do 0. Svaki pritisak na tipkalo broji se kao -5.

Slika 8.1 Sklop za brojač impulsa

Vježba 9. POVEZIVANJE LCD ZASLONA

9.1. <u>Cilj vježbe:</u> Upoznati se s postupkom programiranja mikrokontrolera PIC16F84, te načinom spajanja LCD zaslona i prikazom podataka na njemu.

9.2. <u>Opis vježbe:</u>

Informacije dobivene mjerenjem ili nekim drugim putem moraju se prikazati kako bi ih mogli očitati. Za prikazivanje tih informacija postoji više načina koji se danas koriste. Jedan od njih je prikaz pomoću LCD zaslona. Na LCD zaslonu mogu se prikazivati i slova i brojevi što ga čini pogodnim za primjenu u raznim aplikacijama. Druga karakteristika koja čini LCD pogodnim za upotrebu je niska potrošnja. Sljedeća karakteristika je pouzdanost, a mogli bismo ih nabrojati i još više. Gotovo da i nema elektroničkih uređaja koji se danas mogu nabaviti a da u njima nema barem jedan ugrađen LCD zaslon. Sve ovo nam pokazuje važnost LCD zaslona. Zbog toga će se na ovoj vježbi naučiti kako se LCD zaslon spaja na mikrokontroler, i to na dva načina (jedan radi uštede pinova na mikrokontroleru), te kako se prikazuju podaci na njemu.

9.3. Priprema za vježbu:

Napisati program koji će u sklopu sa slike 9.1. raditi sljedeće:

- postaviti pinove porta B prema slici 9.1.;
- izraditi potprograme za inicijalizaciju, slanje naredaba i znakova na LCD
- koristeći potprograme ispisati svoje ime u prvom retku LCD zaslona, te svoje prezime u drugom retku LCD zaslona.

9.4. Rad na vježbi:

Pokrenuti program MPLAB i u njemu napraviti projekt pod nazivom "vj9.pjt". Program iz pripreme spremiti u datoteku "vj9.asm" i uključiti ju u projekt.

Izgraditi projekt i pokrenuti proces prevođenja projekta, te otkloniti pogreške u slučaju da se pojave.

Nakon uspješnog prevođenja asemblerske datoteke potrebno je pokrenuti simulator.

U simulatoru provjeriti rad programa i ustanoviti je li rad ispravan.

Kad se ustanovi ispravan rad potrebno je prijeći na prebacivanje programa u mikrokontroler pomoću programiralice.

Nakon programiranja mikrokontrolera potrebno je spojiti shemu sa slike 9.1. i provjeriti rad sklopa.

Slika 9.1 Sklop za povezivanje LCD zaslona

PROGRAMSKI PRIMJERI S PREDAVANJA

U ovom poglavlju se nalaze programski primjeri koji se koriste na predavnjima. Studentima se preporuča temeljito proučavanje ovih programskih primjera u svrhu pripreme za laboartorijske vježbe te prije izlaženja na kolokvije i ispite. Razina znanja koju je potrebno postići kako bi se sa punim samopouzdanjem moglo izaći na ispite je razumijevanje svake linije programskog kôda te sposobnost rješavanja zadataka koji se zadaju na temelju ovih primjera.

Primjer 1 – Prvi program, aritmetičke operacije

_____ Primieri 1 _____ _____ Pretprocesorske naredbe _____ PROCESSOR 16F84A #include "p16f84a.inc" ERRORLEVEL -224 CONFIG CP OFF & XT OSC & PWRTE ON & WDT OFF org 0x0; _____ EQU - Pridjeljuje adresnoj lokaciji identifikator EQU0x0C; VARA je mem. lokacija 0x0CEQU0x0D; VARB je mem. lokacija 0x0DEQU0x0E; VARC je mem. lokacija 0x0EEQU0x0F; VARD je mem. lokacija 0x0F VARA VARB VARC VARD _____ _____ Pregled instrukcija movlw, baza konstante _____ ; No OPeration nop ; No OPeration nop ; No OPeration nop movlw 5 movlw 9 ; 5 -> W ; 9 -> W

 moviw
 9
 ; 9 -> W

 moviw
 10
 ; 16 -> W

 moviw
 D'25'
 ; 25 -> W

 moviw
 O'20'
 ; 16 -> W

 moviw
 B'00001111'
 ; 15 -> W

 moviw
 0xF0
 ; 240 -> V

 ; 240 -> W ; movlw D'300' ; 300 -> W? ; Koliko je u W nakon ove naredbe? ; Zasto? 256 + 44 = 300 ; 300(10) = 100101100(2)|----| ; 44 ; Pregled instrukcija (1) ----movlw D'100' ; 100 -> W clrw ; 0 -> W addlw D'25' addlw 0x19 ; W + 25 -> W ; W + 25 -> W VARA movwf ; W -> VARA movwf VARB addwf VARB,W addwf VARB,F ; W -> VARB ; W + VARB -> W ; W + VARB -> VARB

clrf	VARA	; 0 -> VARA
clrf	VARB	; 0 -> VARB
Pregled instrukcij	======================================	
======================================	Sef VARA	• 1 -> 0 bit MARA
hef	VARA 1	\cdot 1 -> 1 bit VARA
bsi	VARA 2	\cdot 1 -> 2 bit VARA
bsf	VARA 3	$: 1 \rightarrow 3$ bit VARA
bsf	VARA. 4	$: 1 \rightarrow 4$, bit VARA
bcf	VARA, 4	$; 0 \rightarrow 4$, bit VARA
comf	VARA, W	: Komplementiraj VARA -> W
movwi	E VARC	; W -> VARC
decf	VARC, F	; VARC - 1 -> VARC
decf	VARC, F	; VARC - 1 -> VARC
incf	VARC,W	; VARC + 1 -> W
movwi	E VARC	; W -> VARC
incf	VARC, F	; VARC + 1 -> VARC
Pregled instrukcij	a (3), oduzimanje	
movlv	v D'50'	; 50 -> W
subly	v D'75'	; 75 - W -> W
nop		;
movly	v D'10'	;\
nop		;) 10 -> VARA
movwi	e vara	;/
movlv	v D'30'	;\
nop		;) 30 -> VARB
movwi	E VARB	;/
nop		;
clrw		;
nop		;
nop		; VARC = VARB - VARA ?
moví	VARA,W	; VARA -> W
subwi	t VARB,W	; VARB - W -> W
movwi	e varc	; W -> VARC
nop		;
nop ==========		
Pregled instrukcij Interpretacija vri	a (4), oduzimanje jednosti -> Dvojni	komplement
movlv	=====================================	; 10 -> W
subly	v D'2'	; 2 - W -> W (W == 253)
nop		;
movlv	v D'253'	; 253 -> W
addlw	v D'5'	; 5 + W -> W (W == 2)
nop		;
Pregled instrukcij	a (5), labela i got	to
1 nop		;
goto	tu3	; idi na "tu3"
nop		;
2 nop		;
nop		;
goto	tu4	; idi na tu4
3 nop	_	;
goto 4 nop	tu2	; idi na tu2 ;
Pregled instrukcij	======================================	
=======================================	======================================	
clrt	VAKA	; U —> VARA

_

i logiumski p		unju	
	bsf	VARA.3	: 1 -> 3. bit VARA
	hcf	VARA 3	$0 \rightarrow 3$ bit VARA
	DCT	VAICA, J	, 0 > 5. DIE VARA
	nop		;
	nop		;
	btfsc	VARA, 3	; 3. bit VARA je 0?
	aoto	51	: idi na sl
	goto	 	; idi na s2
1	yoto	52	, 101 118 52
sl	nop		; S1
	nop		;
	nop		i
	anto	kr1	· idi na krl (krai)
~)	goco	11 I I	, iai na kii (kiaj)
52	пор		; 52
	nop		;
	nop		;
kr1	nop		; kraj
Pregled i Na RBO do Debugger RBO Set b	instrukcija (6 plaze signali -> Stimulus c nigh & RBO Set	5), grananje (0/1), reagirat: controller -> Nev : low	i u ovisnosti. w scenario
			=======================================
pocl	nop		;
	btfss	PORTB,0	; 0. bit PORTB je 1?
	aoto	n2	: idi na p2
n1	non	F -	; ;
PT	nop		, p ₁
	nop		;
	goto	kr2	; idi na kr2 (kraj)
p2	nop		; p2
-	nop		;
kr2	non		, , kr2 (kraj)
KI Z	nop		, KIZ (KIAJ)
;	goto	poci	; idi na pocetak
Pregled i	Instrukcija (7	/), brojenje od S	 5 do 0
			=======================================
	movlw	D'5'	; 5 -> W
	movwf	VARA	: W -> VARA
opot 1	non		•
opeci	nop		
	decisz	VARA, F	; VARA - I -> VARA, da II je VARA U?
	goto	opetl	; idi na opetl
	nop		;
kr3	nop		; kr3 (kraj)
			=======================================
Operacija ako da, p ========	a =, da li su postavi "1" u	brojevi u VARA : VARC inace "0"	i VARB jednaki?
	moviw	י21'	: x -> W
	1110 V I W	UNDN	$M \rightarrow M$
	TILOVWL	VARA	, W = / VARA
	MOVIW	D.20.	; y -> w
	movwf	VARB	; W -> VARB
	nop		;
	movf	VARA,W	; VARA -> W
	aubuf	VADD W	VADD = W = VW
	b+f		
	DUISC	STATUS, Z	; provjeri z zastaviću
	goto	st2	; $Z = 1$, idi na st2
st1	clrf	VARC	; 0 -> VARC
	goto	kr4	; idi na kr4 (kraj)
st2	movlw	י1ים	: 1 -> W
		VADC	$M \rightarrow MAPC$
	IIIOVWL	VARC	; W -> VARC
кr4	nop		; kr4 (kraj)
======== Broji od	VARA do VARB		
	movlw	D'5'	; postavi 5 u VARA
	movwf	VARA	; - -
	movlw	D'12'	; postavi 12 u VARB

kreni kr5 ===================================	movwf nop nop movf subwf btfsc goto nop incf goto nop A=100, B=2,	VARB VARA,W VARB,W STATUS,Z kr5 VARA,F kreni C=5, D=10,	<pre>; - - ; ; ; ; VARA -> W ; VARB - W -> W ; rezultat je 0? ; da, idi na kraj ; ne ; ; VARA + 1 -> VARA ; idi na kreni ; kr5 (kraj) ====================================</pre>
IZTAZ: Y = PRVI NAČIN	A-B* (C-D*E)	= 100-2*(5-	10^4)
======================================	nop		
REZ	EQU	0x0	c
Za podatke izraz: Y =	<pre>movlw addlw addlw addlw movwf comf incf movlw addwf movf addwf comf incf movlw addwf A=100, B=2, A-B*(C-D*E)</pre>	D'10' D'10' D'10' REZ REZ, F REZ, F REZ, F REZ, F REZ, F REZ, F REZ, F REZ, F C=5, D=10, = 100-2*(5-	<pre>;; 10 * 4 BLOK ; ; ; 40 -> REZ ; REZ = -40 ; REZ = 5-40 ; REZ = 5-40 ; REZ = 2 * (5-40) ; REZ = -2*(5-40)</pre>
DRUGI NACII ===================================	N =================		
▲ ⁻ ▲	movlw addlw addlw movwf movlw subwf movf addwf movlw addwf end	D'10' D'10' D'10' REZ D'5' REZ, F REZ, F REZ, F D'100' REZ, F	; 40 -> REZ ; 5 -> W ; 40-5 ; REZ = 2*(40-5) ; REZ = 100 + 2 * (40-5)

Primjer 2 – Petlje za kašnjenje

```
Primjeri 2
 _____
 _____
 PETLJE ZA KAŠNJENJE
 _____
             PROCESSOR 16F84A
             #include "p16f84a.inc"
             ERRORLEVEL -224
             __CONFIG _CP_OFF & _XT_OSC & _PWRTE_ON & _WDT_OFF
 _____
 Jednostruka petlja
 Najvece kasnjenje = 768 ciklusa
 768 ciklusa uz Fosc=4 MHz traje 768 us.
 _____
                           ; demonstracija izvođenja jednog ciklusa
          nop
                           ; demonstracija izvođenja jednog ciklusa
          nop
           nop
                           ; demonstracija izvođenja jednog ciklusa
          call
                 cekanje
;
                  0x0c
COUNT
                           ; definirati konstantu za brojac (registar)
           equ
                  D'0'
                          ; L -> W
; W -> COUNT
           movlw
                  COUNT
           movwf
                           ; 1 Ciklus
           nop
           decfsz COUNT
petlja
                           ; (L-1) * 1 Ciklus + 2 Ciklusa
                          ; (L-1) * 2 Ciklusa
           goto
                 petlja
                           nop
                            3*L Ciklusa
 _____
 Dvostruka petlja
 Najvece kasnjenje = 197632 ciklusa
 197632 ciklusa uz Fosc=4 MHz traje 197,632 us
 197632 ciklusa uz Fosc=4 MHz traje ~ 200 ms
 K = 255, L = 255
 _____
          nop
cekanje
          nop
COUNT1
                 0xd
          equ
                           ;
COUNT2
                 0xe
          equ
                           ;
                D'255'
          movlw
                                              K -> W
                           ;
                                              W -> COUNT2
           movwf
                 COUNT2
                           ;
                           ; 1C
; K * 1C
          nop
          nop
movlw D'255'
movwf COUNT1
                                             L -> W
petlja1
                          ; K * 1C
                                              W -> COUNT1
                          ; [(L-1) * 1C + 2C] * K
petlja2
          decfsz COUNT1
                          ; [(L-1) * 2C] * K
                 petlja2
           goto
                          ; (K-1) * 1C + 2C
; (K-1) * 2C
                 COUNT2
           decfsz
                petlja1
           goto
                               ------
           nop
                           :====
                           ; K*L*3C + K*4C - 1C
           nop
```

Trostruka petlja za kasnjenje

Najvece	kasnjenje na	Fosc=4MHz je	e 49.87s	3
BROJAC1	equ	0x10		
BROJAC2	equ	0x11		
BROJAC3	equ	0x12		
	nop			
kasni	movlw	D'0'	;	J
	movwf	BROJAC1		
p1	movlw	D'0'	;	K
	movwf	BROJAC2		
p2	movlw	D'0'	;	L
	movwf	BROJAC3		
р3	decfsz	BROJAC3,	F	
	goto	p3		
	decfsz	BROJAC2,	F	
	goto	p2		
	decfsz	BROJAC1,	F	
	goto	p1		
	nop			
	end			

Primjer 3 – Potprogrami, mehanizam poziva potprograma

```
Primjeri 3
 _____
 _____
 POTPROGRAMI
 PROCESSOR 16F84A
        #include "p16f84a.inc"
        ERRORLEVEL -224
         __CONFIG _CP_OFF & _XT_OSC & _PWRTE_ON & _WDT OFF
 MACRO
 _____
 Makro je *niz* instrukcija koje se umeću u izvorni kôd pomoću
 samo *jednog* poziva. Makro je potrebno prvo definirati kako bi
 ga se moglo pozvati u kôdu koji slijedi.
 _____
BANKO macro
    nop
    bcf STATUS, RPO nop
    endm
BANK1 macro
    nop
    bsf STATUS, RPO nop
    endm
            0x0;
        orq
        goto
            prim1;
;
        goto prim2;
        goto prim3;
        goto prim4;
        goto prim5;
 _____
                 Postavljaju se 4 prva pina PORTB kao izlazni
 a druga 4 pina kao ulazni. Na prva dva pina
 salje se "1"
 Izlazni pin :0, ulazni pin:1
             _____
 _____
        bsf STATUS, RPO ; odabir Bank 1
        movlw 0xF0
                         ; OxF0 == B'11110000'
        movwf TRISB ^ 0x80
                         ; postavi 0xF0 u TRISB
           STATUS, RPO
        bcf
                        ; odabir Bank 0 radi PORTB
                         ; postavi B'00000011' u W
        movlw 0x03
                         ; postavi 0x03 na PORTB
        movwf PORTB
 _____
 (Isto kao i gore. Koristi se macro)
 Postavljaju se 4 prva pina PORTB kao izlazni
 a druga 4 pina kao ulazni. Na prva dva pina
 salje se "1"
 Izlazni pin :0, ulazni pin:1
           nop
        BANK1
                        ; OxF0 == B'11110000'
        movlw 0xF0
                          48
```

Programski primjeri s predavanja movwf TRISB ^ 0x80 ; postavi 0xF0 u TRISB nop BANK0 ; postavi B'00000011' u W movlw 0x03 movwf PORTB ; postavi 0x03 na PORTB _____ View -> Disassembly Listing !!! View -> Program Memory !!! View -> Hardware Stack !!! _____ POTPROGRAMI CALL, RETURN, RETLW Cemu sluze i kako rade? Stog (Stack). Na koji nacin se izvrsavaju? Goto naredba i potprogram. ; Ι $\setminus | /$ / ; ; _ _ / potprogram call \ \|/ ; $\setminus | /$; prim1 nop nop nop ; radi nesto call cekanje nop nop nop call cekanje nop cekanje nop ; odradi cekanje nop call cekanje2 nop return cekanje2 nop ; odradi cekanje nop call cekanje3 nop return cekanje3 nop ; odradi cekanje nop nop return TABLICE PODATAKA - liste podataka, podaci su smješteni jedan iza drugoga - prikladno za prikaz podataka na 7-segmentnom pokazniku. - razmotrimo primjer

prim2 nop 0x02 ; na 0x02 je PCL, programsko brojilo PC EQU movlw 0x02 ; 0x02 -> W
call table ; pozovi potprogram table nop nop goto drzi table nop addwf PCL, F ; PC + W -> PC retlw 0x34 retlw 0x23 ; W = 44retlw 0x44 retlw 0x10 retlw 0x98 retlw 0xF0 retlw 0xD1 drzi nop nop movlw 0x1 call table nop Preporuka je stavljati tablice podataka na kraj programa. Na taj način se sprječava grješka u slučaju kada se prekorači tablica. +----+ | PIC | + ; + -RBO | ## | ; а RB # b ; 1 f # | ----h----; RB2 |----- c---| ## | RB |----- d-3 -- | ___ ; RB4 |----| e---| c# | ; . RB ----- f-| - -# -- | 5 ___ # ; ## *| : RB6 | - ----- q--- | d do |-----RB dot t-7 ---1 ; + +----- $^{+}$; +---Ispisuje 4 na 7seg prim3 nop pocetak nop STATUS, RPO ; BANK 1 bsf clrf TRISB ^ 0x80 ; 0 -> TRISB

glavni	bcf clrf movlw call movwf	STATUS, PORTB 0x00 sedseg PORTB	rp0	;;;;;;	BANK 0 0 -> PORTB 0x09 -> W idi na sedseg W -> PORTB
pettlja	goto	pettlja		;	zavrti se tu
sedseg	nop addwf retlw retlw retlw retlw retlw	PCL, F 0x3F 0x06 0x5B 0x4F 0x66		;;;;;;;;	W + PCL -> PCL 0 0x3F = B'00111111' 1 0x06 = B'00000110' 2 0x5B = B'01011011' 3 0x4F = B'01001111' 4 0x66 = B'01100110'

retlw	0x6D	;	5	
retlw	0x7D	;	6	
retlw	0x07	;	7	
retlw	0x7F	;	8	
retlw	0x6F	;	9	
retlw	0x77	;	А	
retlw	0x7C	;	В	
retlw	0x39	;	С	
retlw	0x5E	;	D	
retlw	0x79	;	Ε	
retlw	0x71	;	F	
retlw	0x80	;		

Primjer 4 – Prekidi

```
Primieri 4
 _____
 _____
 PREKIDI
 PROCESSOR 16F84A
           #include "p16f84a.inc"
          ERRORLEVEL -224
           __CONFIG _CP_OFF & _XT_OSC & _PWRTE_ON & _WDT_OFF
 Prekid je proces koji zaustavlja mikrokontroler u njegovom radu
 kako bi se obavilo nešto drugo, tj. kako bi neki sklop signalizirao
 procesoru da se s njim nesto zbiva i da je potrebno jedan dio procesorskog
 vremena i njemu dati. (Sklop TIMERO stvara prekid pri preljevu 0xFF -> 0x00)
     GLAVNI PROGRAM
                    --- PREKID se dogodi ==>>--+
;
;
                    \
     . . .
                <----
;
     . . .
                <-----povratak-iz-prekida-----+--+
;
     . . .
;
   PREKIDNA RUTINA
                                          + |
    . . .
;
;
     . . .
                                             +
;
     RETFIE ==
 4 izvora prekida; 2 izvora su vanjski prekidi, 2 izvora su unutrasnji
 prekidi (TIMERO i WDT)
 RBO/INT - može biti izvor vanjskog prekida
 RB4 - RB7 - isto se može koristiti za prekide
 1. Kod koristenja prekida PICu moramo dati do znanja da ćemo koristiti prekid
 2. Odrediti koji pin porta B će se koristiti za prekide
 Registar za kontrolu prekida je INTCON
;
 7
      6
            5
                        3 2
                  4
                                    1
 +----+----+----++-----++-----+
; | GIE | EEIE | TOIE | INTE | RBIE | TOIF | INTF | RBIF |
 ;
; GIE :: Global Interrupt Enable bit; 1 = Enable, 0 = Disable
               Omogućavanje prekida
 TOIE :: TMR0 Owerflow Interrupt bit; 1 = Enable TMR0 interrupt, 0 = Disable
 INTE :: RB0/INT Interrupt Enable bit; 1 = Enable, 0 = Disable
               RBO pin je odabran kao prekidni ulaz
;
; RBIE ::
          RB Port Change Interrupt bit; 1 = Enable, 0 = Disable
               Omogućavanje prekida na promjenu stanja
;
; TOIF :: TMRO Overflow interrupt flag bit; 1 = Preljev, 0 = nema preljeva
; INTF :: RB0/INTInterrupt Flag bit
                1 kod pojave prekida na RB0/INT pinu
;
; RBIF :: RB Port Change Interrupt Flag; 1 = neki od RB4-RB7 je promijenio stanje
               kod promjene stanja na nekom od pinova RB4-RB7
;
; OPTION REG ::
; 7 6
                5
                      4 3
                                2
                                     1
                                          0
               +----- +----- +----- +----- +
; +-----
; | *RBPU | INTEDG | TOCS | TOSE | PSA | PS2 | PS1 | PS0 |
              +----- +----- +----- +----- +----- +
; +------
; INTEDG:: Interrupt Edge Select bit
                1 - prekid na rastući brid na pinu RB0/INT
                0 - prekid na padajući brid na pinu RB0/INT
;
; Zastavica prekida RBIF i INTF postavljaju se automatski u "1" kod pojave
```

prekida, te se ne postavljaju automatski u "O" već se to mora riješiti programski _____ | Vrijednost PC-a se pri pojavi prekida postavlja| | na 0x04 što je adresa gdje počinje prekidna ; | servisna rutina _____ Iz te servisne rutine vraća se naredbom RETFIE org 0x00 goto glavni ora 0x04 ; prekidna rutina nop nop nop retfie glavni nop nop goto glavni ; glavni dio programa kod pozivanja prekida treba paziti na dvije stvari 1. U slučaju kada se koriste isti registri u glavnom programu i u prekidnoj rutini, vrlo vjerojatno će se sadržaj registara promijeniti u prekidnoj rutini, što može dovesti do pogrešnog rada glavnog programa. 2. Postoji odeđeno kašnjenje između dva prekida koji se mogu primijetiti Između dva susjedna prekida mogu proći 3 do 4 instrukcijska ciklusa (zbog skoka na prekidnu adresu, postavljanja zastvica prekida i povratka iz prekidne rutine) ; Kako prilikom prekida jedino sadržaj PC-a biva sačuvan, korisnik se sam mora pobrinuti da sačuva sve vrijednosti registara koje su mu važni za rad programa (npr. W i STATUS). Tako bi servisna rutina morala sadržavati sljedeće korake a) zapamtiti W registar b) zapamtiti STATUS registar c) izvršiti kôd servisne rutine d) obnoviti STATUS registar e) obnoviti W registar

2016

Primjer 5 – Modul Timer

```
Primieri 5
 _____
 _____
 TIMER0 Modul
 _____
           PROCESSOR 16F84A
           #include "p16f84a.inc"
          ERRORLEVEL -224
          ____ONFIG _CP_OFF & _XT_OSC & _PWRTE_ON & ____WDT_OFF org 0x0
                          _____
 _____
           ____
 TIMER0 Modul
 Mogucnosti: 8 bitni timer/brojac; TMRO se moze pisati i citati,
 8 bitno predjelilo, unutarnji ili vanjski podrazaji za brojilo,
; prekid pri preljevu 0xFF -> 0x00, odabir ruba za vanjski podrazaj
 Dva načina rada: Timer i Brojač. Nacin rada odabire se pomocu TOCS bita
 (OPTION_REG<5>). Kada predjelilo nije odabrano u timer načinu rada
 TMRO registar povećava se za 1 svaki ciklus. Brojač način rada povećava
 za jedan na rastući ili padajući brid pina RA4/TOCKI. Rastući/padajući
 brid se odabire itom TOSE (OPTION REG<4>)
 Predjelilo je izvedeno kao 8 bitni brojač. Postoji samo jedno predjelilo
 kojeg TimerO ili WDT mogu koristiti.
;
      4MHz osc :: MAX kasnjenje: 65.53s
 32.768KHz osc :: MAX kasnjenje: 8s
 Kasnjenje se moze izvesti koristenjem prekidne rutine ili bez
 prekida koristeci TOIF bit INTCON<2> registra. Pri preljevu registra
 TMR0 (0xFF -> 0x00) postavlja se TOIF bit (potrebno ga je 'rucno' obrisati
 u programu) i dolazi do prekida. Prekid se moze maskirati brisanjem TOIE
 bita INTCON<5> registra.
;
           (256-INIT_TMR0) * PREDJELILO
 KASNJENJE = -----
              FREKVENCIJA / 4
;
;
                 KASNJENJE * FREKVENCIJA
;
; INIT TMR0 = 256 - ----
                   4 * PREDJELILO
;
; OPTION REG ::
               5
                    4
                         3
; 7 6
; '/ 6 5 4 3 2 1 0
; +----++---++----+
                               2 1
; | *RBPU | INTEDG | TOCS | TOSE | PSA | PS2 | PS1 | PS0 |
+----+
; TOCS :: TMRO Clock Source Select Bit; 1 = RA4/TOCKI, 0 = CLKOUT interni clock
; PSA
        :: Prescaler assignment; 1 = WDT, 0 = TMR0
; PS2-PS0 :: bitovi predjelila
+----+
; | X | X | 0 | X | 0 | | |
; + ----- +----- +-----
                     +----+---+--
                                   \ | /
\ | /
                                           /
                                      000 1 : 2
; 1:1 se postize bez predjelila
; tj. predjelilo za taj slucaj mora biti
                                      001 1 : 4
; pridjeljeno WDT-u
                                       010 1 : 8
                                       011 1 : 16
                                       100 1 : 32
;
                                       101 1 : 64
;
```

110 1 : 128 111 1 : 256 ; ; ; INTCON :: 5 3 4 2 1 0 76 ; | GIE | EEIE | TOIE | INTE | RBIE | TOIF | INTF | RBIF | +----+ ; GIE :: Global Interrupt Enable bit; 1 = Enable, 0 = Disable ; TOIE :: TMRO Owerflow Interrupt bit; 1 = Enable, 0 = Disable ; TOIF :: TMR0 Overflow interrupt flag bit; 1 = Preljev, 0 = nema preljeva ; Timeru se vrijednost poveća za 1 svakih: 1/[(Fosc/4)/predjelilo] _____ Vrijeme kasnjenja u potprogramu za kasnjenje je 32.8 ms $128 \times 256 \text{ us} = 32.768$ 128 upravo zato jer se "opet" testira da li je TMRO dosao do 128 TMR0 EQU 0x01 clrf TMR0 ; 0->TMR0 bsf STATUS, RPO movlw B'11011000' ; BANK 1 ; 0->TOIE, 0->TOIF, predjelilo 256 movwf OPTION_REG ^ 0x80 ; W -> OPTION_REG bcf STATUS, RP0 ; BANK 0 nop nop nop nop movlw D'253' movwf TMR0 nop nop nop nop nop nop nop nop nop ; neki posao se tu obavlja nop call cekaj ; pozovi potprogram za cekanje nop call cekaj2 nop call cekaj2 ; opet neki posao nop Primjer s direktnom provjerom TMR0 registra Potprogram za cekanje ; 0->TMR0, ocisti TMR0 cekaj clrf TMR0 movlw D'120' movwf TMR0 opet btfss TMR0,7 ; da li je TMR0 = 128? goto opet ; vrati se na "opet" return ; povratak iz potprograma Provjera TOIF zastavice, INTCON<2> _____

cekaj2	nop											
		movlw		D'250'								
		movwf		TMR0								
		bcf		INTCON,	TOIF	;	!!	!	!!	!	!!	
		bcf		INTCON,	TOIF	;	!!	!	!!	!	!!	
opet2		btfss		INTCON,	TOIF							
		goto	opet2									
		nop										
		bcf		INTCON,	TOIF	;	!!	!	!!	!	!!	
		return										
		end										

Primjer 6 – Timer pomoću prekida

_____ Primieri 6 _____ _____ PREKIDI + TIMERO (čin treći) _____ PROCESSOR 16F84A #include "p16f84a.inc" ERRORLEVEL -224 __CONFIG _CP_OFF & _XT_OSC & _PWRTE_ON & _WDT_OFF ; TMR0 registar 0x01 TMR0 EQU 0x0C BROJI ; BROJI registar EQU 0x00 ; idi na glavni program program ; kako bi se program 0x00 org ; kako bi se preskocila prekidna rutina goto orq INTCON, TOIF : ociat bcf ; ocisti zastavicu prekida bcf clrf TMR0 ; 0->TMRO, ocisti TMRO iako je cist BROJI, F incf ; povecaj broji retfie ; vrati se iz prekida Postavljanje TIMERO sklopa _____ program nop STATUS, RPO B'11010000' ; BANK1 bsf ; 0->TOIE, 0->TOIF, predjelilo 2 movlw OPTION_REG ^ 0x80 ; W -> OPTION_REG movwf bcf STATUS, RPO ; BANKO _____ Postavljanje prekida _____ STATUS, RPO bcf ; BANKO INTCON, GIE INTCON, GIE ; omoguci prekide INTCON, TOIE ; TIMERO Interrupt Enable, omoguci prekid pri prelievu bsf bsf ; prekid pri preljevu INTCON, INTE ; onemoguci prekida na RBO/INT INTCON, INTF ; ocisti zastavicu prekida INTCON, TOIF ; ocisti zastavicu TOIF bcf bcf bcf Glavni dio programa _____ clrf BROJI ; ocisti pregistar broji movlw D'200' movwf TMR0 opet nop nop nop goto opet ; idi na opet, idi na opet, idi ... end

Primjer 7 – Rad s 16 bitnim podacima

```
Primjeri 7
 _____
 _____
 Aritmeticke operacije, STATUS registar
 PROCESSOR 16F84A
        #include "p16f84a.inc"
        ERRORLEVEL -224
        __CONFIG _CP_OFF & _XT_OSC & _PWRTE_ON & _WDT OFF
 _____
 Napisati program koji će zbrojiti dva heksadecimalna broja:
 0xFF i 0x01. Rezultat prikazati na LED diodama koje su spojene
 na PORTB. Status zastavice C, DC i Z prikazati na LED diodama koje su
 spojene na pinovima RAO, RA1 i RA2
                         _____
 0xFF + 0x01 = 0x0; Z=1, DC=1, C=1
;
  11111111 255
 +0000001 + 1
  _____ ___
 10000000 256
  |-> C = 1; Prekoračenje opsega broja
 Status registar
 +----+
; | | | Z | DC | C |
 +----+
;
;
        org 0x0
        nop
                STATUS, RPO
                              ; bank1
        bsf
        clrf TRISA ^ 0x80 ; Svi pinovi PORTA izlazni
        clrf TRISB ^ 0x80 ; Svi pinovi PORTB izlazni
                STATUS, RPO
        bcf
                              ; bank0
                         ; ocisti PORTA
; ocisti PORTB
        clrf PORTA
        clrf PORTB
                STATUS, C ; ocisti C zastavicu
STATUS, DC ; ocisti D7
        bcf
        bcf
                              ; ocisti DC zastavicu
        bcf STATUS, Z
                         ; ocisti Z zastavicu
                ; 0xFF -> W
; + 0x01 -> W
        movlw 0xFF
        addlw 0x01
        nop
                              ;
 Primijetiti promjenu zastavicu Z,DC i C STATUS registra !!!!
     nop
                              ;
        movwf PORTB ; PORTB
movf STATUS, W ; STATUS -> W
        movwf PORTA ; W -> PORTA
        nop
                     ;
 _____
 16-bitno zbrajanje u 8-bitnom mikrokontroleru
 _____
 Najprije se zbroje niži bajtovi, onda se zbroje viši bajtovi i CARRY
 bit ako se pojavio kod zbrajanja nižih bajtova.
 Primjer 1. :: 0x2056 + 0x12EC = 0x3342
```

; 56 ; +EC ; ; 142 ; 	20 +12 > 01 33					
Primjer 2.	:: 0xE	FFF + 0x	FFFF = 0	x1FFFF		
; FF ; +FF ; ; 1FE ;	E F > +C 1FF 	F F 1 - ,	00 00 > +01 01			
Napisati p 0x7C48. Bi pritiskom PORTB. te je 0x01FFF	program tove 0 na tipa 16 i 17 F (18 k	koji će do 7 pri alo spoje / bit na pitova)	zbrojiti kazati n no na pi pinovima	dva 16 a PORTB n RA4 p RA0 i	5-bitna broja : 0xA98B i 8 koristeći LED diode a 0rikazati bitove 8 do 15 na RA1. Najveći mogući rezultat	
0xA98B + 0	x7C48 =	= 0x125D3				
org 0: XL EQU XH EQU YL EQU YH EQU	x20 0x0C 0x0D 0x0E 0x0F					
RESULTL RESULTH RESULTM TCARRY EQU	EQU EQU EQU 0x13	0x10 0x11 0x12				
	bsf clrf movlw movwf bcf clrf clrf clrf clrf	STATUS, TRISB ^ 0×10 TRISA ^ STATUS, PORTB PORTA TCARRY RESULTM	RP0 0x80 0x80 RP0	; H ; 1 ; H ; V ; H ; 0 ; 0 ; 0 ; 0	BANK 1 PORTB svi pinovi izlazni RA4 ulazni, ostali izlazni W -> TRISA BANK 0 ocisti PORTB ocisti PORTA ocisti TCARRY ocisti RESULTM	
	movlw movwf movlw movwf movlw movwf movlw	0xA9 XH 0x8B XL 0x7C YH 0x48 YL		; (; (; (0xA9 -> XH 0x8B -> XL 0x7C -> YH 0x48 -> YL	
ADD	nop movf addwf movwf btfsc incf	XL, W YL, W RESULTL STATUS, TCARRY	0	; 2 ; 2 ; 0 ; 2 ; 0	Zbroji LOW dijelove XL -> W W + YL = W XL + YL = RESULTL CARRY? postoji CARRY	
	movf addwf	ХН, W ҮН, W		; 2 ; 2 ; 1	Zbroji HIGH dijelove XH -> W W + YH = W	

	movwf	RESULTH		;	XH + YH = RESULTH
	btfsc	STATUS, 0		;	CARRY?
	incf	RESULTM		;	postoji CARRY
				;	Zbroji TCARRY i RESULTH
	movf	TCARRY, W	I	;	TCARRY -> W
	addwf	RESULTH,	F	;	RESULTH + CARRY -> RESULTH
	incf	RESULTM		;	Postoji CARRY
LOBYTE	nop				
	movf movwf	RESULTL, PORTB	W		
TIPKA	btfsc goto	porta, 4 Tipka			
HIBYTE	movf	RESULTH,	0		
	movwi	PORTB	0		
	movi movwf	RESULTM, PORTA	0		
line i	ant o	Irmod			
ĸıaj	yulu	ктај			
	end				

Primjer 8 – Upravljanje s LCD zaslonom HD44780

Shema spajanja LCD pokaznika

Upravljanj	e s LCD zaslonom HD44780 pomocu PIC16F84A
	PROCESSOR 16F84 #include "p16f84a.inc" ERRORLEVEL -224 CONFIG _CP_OFF & _XT_OSC & _PWRTE_ON & _WDT_OFF
========= Definicija	a memorijskih lokacija
BROJAC CHAR TEMP COUNT1 COUNT2	EQU 0x0C EQU 0x0D EQU 0x0E EQU 0x10 ; prvi (vanjski) brojac EQU 0x11 ; drugi (unutarnji) brojac
RS i E lir Spojene su	nije prema LCD modulu na RB2(RS) i RB3(E)
 RS E	EQU 2 EQU 3
Instructic (http://ww Ovo su kor kojima se	on set za Hitachi HD44780 ww.doc.ic.ac.uk/~ih/doc/lcd/instruct.html) htrolni okteti za LCD tj. naredbe za LCD određuje način njegovor rada
INIT4BIT1 INIT4BIT2	EQU B'00110011' EQU B'00110010'
CLEAR RETHOME ENTRYMODE DISPONOFF ;FUNCSET FUNCSET	EQU B'00000001' ; Brise ekran EQU B'00000010' ; Ispisivanje se vraca na pocetak EQU B'00000110' ; Nacin rada. Inc/Dec = 1, Shift = 0 EQU B'0000110' ; Display ON/OFF, Disp=1, Curs=0, Blink=1 EQU B'00101000' ; Function set, DataLength=0, NF=1* EQU B'00101100' ; Function set, DataLength=0, NF=1*
	org 0x00
Postavljar	nje portova
	bsf STATUS, RPO ; banka 1 clrf TRISB ^ 0x80 ; PORTB je izlazni bcf STATUS, RPO ; banka 0 clrf PORTB ; ocisti PORTB clrf BROJAC ; ocisti BROJAC
=========== Inicijaliz	zacija LCD-a
	call cek15 call LCDINIT ; Inicijalizacija LCD-a
======= Glavni dic	programa
glavni1	movlw0x0; 0 u W, uzmi 0. znak iz tablice za pocetakmovwfBROJAC ; Sačuvaj sadržaj W-registra (brojac)call string1; Uzima znak iz tablice (string1)andlw 0xFF; 0 oznacava kraj znakovnog nizabtfsc STATUS, Z; ako je 0 niz je ispisan do krajagotodalje; ako je 0 idi na krajcall SNDCH; salje znak na LCD
Ll	call cek1 ; kasnjenje movf BROJAC,W ; Sadrzaj brojaca u W registar addlw D'1' ; Uvecaj ga za 1 goto glavnil ; Idi na pocetak glavnog programa

dalje	nop movlw 0xC0 call SNDCMD	; ; ; naredba za prelezak u drugi red ;
glavni2	<pre>movlw 0x0 movwf BROJAC call string2 andlw 0xFF btfsc STATUS, Z goto kraj call SNDCH call cok1</pre>	; ; 0 u W, uzmi O. znak iz tablice za pocetak ; Sačuvaj sadržaj W-registra (brojac) ; Uzima znak iz tablice (string2) ; 0 oznacava kraj znakovnog niza ; ako je 0 niz je ispisan do kraja ; ako je 0 idi na kraj ; salje znak na LCD ; kaspionio
L11	movf BROJAC,W addlw D'1' goto glavni2	, kashjehje ; Sadrzaj brojaca u W registar ; Uvecaj ga za 1 ; Idi na pocetak glavnog programa
kraj	nop goto kraj	; ; ;
CNDCU		, ; Podprogram za slanje znakova na LCD (RS=1) ; Znak koji se salje na LCD nalazi se u W registru
SNDCH	nop movwf CHAR call cek1 call cek1 call cek1 movf CHAR, W andlw 0xF0 movwf PORTB bsf PORTB, E swapf PORTB, E swapf CHAR, W andlw 0xF0 movwf PORTB bsf PORTB, E ssf PORTB, RS bsf PORTB, RS bsf PORTB, RS	<pre>; W -> CHAR ; cek1 ; cek1 ; cek1 ; CHAR -> W ; od W uzmi samo gornja 4 bita, ostalo na 0 ; Postavi gornja 4 bita W na PORTB (RB4-RB7 = D4-D7) ; Odaberi podatkovni registar ; Postavi ENABLE signal ; ocisti ENABLE signal ; Zamjeni gornja i donja 4 bita CHAR-a rezultat u W ; od W uzmi samo gornja 4 bita, ostalo na 0 ; Postavi donja 4 bita podatka za LCD na RB4-RB7 ; Odaberi podatkvoni registar ; Postavi ENABLE signal</pre>
bcf	PORTB,E return	; Ocisti ENABLE signal ; Povratak iz potprograma
SNDCMD	<pre>movwf CHAR call cek1 call cek1 call cek1 call cek1 movf CHAR,W andlw 0xF0 movwf PORTB bcf PORTB,E call cek15 swapf CHAR,W andlw 0xF0 movwf PORTB bcf PORTB,E call cek15 swapf CHAR,W andlw 0xF0 movwf PORTB bcf PORTB,RS bsf PORTB,E nop bcf PORTB,E call cek15 nop return</pre>	<pre>; W -> CHAR ; pozovi cek1 ; pozovi cek1 ; pozovi cek1 ; CHAR -> W ; od W uzmi samo gornja 4 bita, ostalo na 0 ; postavi gornja 4 bita na RB4-RB7 = D4-D7 LCDa ; odaberi instrukcijski registar LCDa ; postavi ENABLE signal ; ocisti ENABLE signal ; ocisti ENABLE signal ; zamijeni gornja i donja 4 bita CHAR, rezultat u W ; od W uzmi samo gornja 4 bita, ostalo na 0 ; postavi donja 4 bita naredbe za LCD na RB4-RB7 ; odaberi instrukcijski registar ; postavi ENABLE signal ; ocisti ENABLE signal</pre>

LCDINIT	nop goto	init1		
	bcf bcf bsf bsf bsf bcf call	P P P P P C	PORTB, PORTB, PORTB, PORTB, PORTB, PORTB, PORTB, Cek15	7 6 5 4 E E
	bsf bcf call	P P C	PORTB, PORTB, cek15	E E
	bsf bcf call	P P C	PORTB, PORTB, cek15	E E
	bcf bcf bcf bsf bsf bcf call	P P P P P cek15	PORTB, PORTB, PORTB, PORTB, PORTB, PORTB,	7 6 5 4 E E
	goto	init2		
init1	nop movlw call	INIT4BII SNDCMD	Τ1	
	movlw call	INIT4BI SNDCMD	Т2	
init2	nop			
	movlw call	FUNCSET SNDCMD		; Function set, DataLength=0, NF=1*
	movlw call	DISPONOR SNDCMD	FF	; Display ON/OFF, Disp=1, Curs=0, Blink=1
	movlw call	CLEAR SNDCMD		; Brise ekran
	movlw call return	ENTRYMOI SNDCMD	DE	; Nacin rada. Inc/Dec = 1, Shift = 0
========== Kašnjenje	====== od 1ms	(Fosc =	4MHz)	
cek1	nop goto nop movlw	cek15 0xFF		
L2	movwf nop decfsz goto return	TEMP z T L2	ſEMP,F	

======================================	od 15ms (Fosc = 4MHz	:) K=50, L=100
cek15 nop petlja1 petlja2	<pre>movlw D'15' movwf COUNT2 nop movlw D'100' movwf COUNT1 decfsz COUNT1 goto petlja2 decfsz COUNT2 goto petlja1 nop nop return</pre>	; K -> W ; W -> COUNT2 ; 1C ; K * 1C L -> W ; K * 1C W -> COUNT1 ; [(L-1) * 1C + 2C] * K ; [(L-1) * 2C] * K ; (K-1) * 1C + 2C ; (K-1) * 2C ;====================================
Znakovni n	iz za prvi red LCD-a	
string1	addwf PCL, F retlw '0' retlw '1' retlw '2' retlw '3' retlw '4' retlw '5' retlw '6' retlw '6' retlw '7' retlw '8' retlw '9' retlw '0' retlw '0' retlw '1' retlw '2' retlw '3' retlw '3' retlw '5' retlw '5' retlw '5' retlw '5' retlw '5' retlw '9' retlw '9' retlw '9' retlw '9' retlw '9'	
Znakovni n ========	iz za drugi red LCD-	·a
string2	<pre>addwf PCL, F retlw ' ' retlw '.' retlw '.' retlw '.' retlw ':' retlw ':' retlw '=' retlw '>' retlw 'D' retlw 'E' retlw 'M' retlw 'O' retlw '<' retlw ':' retlw ':' retlw ':' retlw ':' retlw '.' retlw '.'</pre>	

```
retlw ' '
retlw ' '
retlw 0x0 ; Kraj poruke
```

end

Primjer 9 – Upravljanje tipkovnicom i LCD zaslonom

Shema spajanja tipkovnice i LCD pokaznika

```
Upravljanje s tipkovnicom i LCD zaslonom pomocu PIC16F84A
 _____
        PROCESSOR 16F84
        #include "p16f84a.inc"
        ERRORLEVEL -224
        __CONFIG _CP_OFF & _XT_OSC & _PWRTE_ON & _WDT_OFF
 _____
 Definicija memorijskih lokacija
 _____
       EQU 0x0C
BROJAC
      EQU 0x0D
CHAR
       EQU 0x0E
TEMP
    EQU 0x10
EQU 0x11
               ;prvi (vanjski) brojac
;drugi (unutarnji) brojac
COUNT1
COUNT2
 RS i E linije prema LCD modulu
 Spojene su na RB2(RS) i RB3(E)
 _____
RS
        EQU 2
       EQU 3
Ε
 _____
 Instruction set za Hitachi HD44780
 (http://www.doc.ic.ac.uk/~ih/doc/lcd/instruct.html)
```

Ovo su kontrolni okteti za LCD tj. naredbe za LCD koje mu govore na koji nacin da radi _____ INIT4BIT1 EQU B'00110011' ; Init 1 ; Init 2 INIT4BIT2 EQU B'00110010' CLEAREQUB'00000001'RETHOMEEQUB'00000010'ENTRYMODEEQUB'00000110'DISPONOFFEQUB'00001110' ; Brise ekran ; Ispisivanje se vraca na pocetak ; Nacin rada. Inc/Dec = 1, Shift = 0 ; Display ON/OFF, Disp, Curs, Blink FUNCSET EQU B'00101100' ; Function set, DataLength, NF org 0x00 Postavljanje portova _____ bsf STATUS, RPO ; banka 1 clrf TRISB ^ 0x80 ; PORTB je izlazni movlw b'11100' ; RAO-RB1 izlazi, RA2-RB4 izlazi movwf TRISA ; RAO-RB1 izlazi, RA2-RB4 izlazi bcf STATUS, RP0 ; banka 0 clrf PORTB ; ocisti PORTB clrf BROJAC ; ocisti BROJAC clrf BROJAC ; ocisti BROJAC _____ Inicijalizacija LCD-a call cek5ms call LCDINIT ; Inicijalizacija LCD-a _____ Glavni dio programa _____ _____ ; test 1. reda 1.segment - provjera tipkala tipkovnice _____ movlw 0x00 movwf BROJAC clrf PORTA ; niska naponska razina na RAO,RA1 - red 1 HIGH btfsc PORTA, 2 ; Provjera tipkala na RA2 - stupac 1 pocetak clrf PORTA btisc roan, goto tipkal ; btfsc PORTA, 3 ; Provjera tipkala na RA3 roto tipka2 ; - stupac 2 btfsc PORTA, 4 ; Provjera tipkala na RA4 - stupac 3 goto tipka3 ; test 2. reda _____ bsf PORTA, 0 ; visoka naponska razina na RBO - red 2 HIGH btfsc PORTA, 2 ; Provjera tipkala na RB5 - stupac 1 ptise form, goto tipka4 ; btfsc PORTA, 3 ; Provjera tipkala na RB6 roto tipka5 ; - stupac 2 btfsc PORTA, 4 ; Provjera tipkala na RB7 goto tipka6 ; - stupac 3 porta, 0 bcf ; _____ test 3. reda _____ bsf PORTA, 1 ; visoka naponska razina na RB2 , Provjera tipkala na RB5 - red 3 HIGH btfsc PORTA, 2 - stupac 1 goto tipka7 btfsc PORTA, 3 ; Provjera tipkala na RB6 goto tipka8 ; - stupac 2 ; Provjera tipkala na RB7 btfsc PORTA, 4 - stupac 3
	goto	tıрка9	;	
======== test 4. r	======= eda			
	====== bsf btfsc goto btfsc	PORTA, 0 PORTA, 2 tipkaA PORTA, 3	; visoka naponska razina na RB3 ; Provjera tipkala na RB5 ; ; Provjera tipkala na RB6	- red 4 HIGH - stupac 1 - stupac 2
	goto btfsc	tipka0 PORTA, 4	; ; Provjera tipkala na RB7	- stupac 3
	goto goto	tipkaB pocetak	; ; vrati se na pocetak - vrti se u krug	
2. segmen	======= t - prov	/jera tipkala	a tipkovnice	
tipkal	movlw btfsc goto goto	0x01 PORTA, 2 tipka1 glavni1		
tipka2	movlw btfsc goto goto	0x02 PORTA, 3 tipka2 glavni1		
tipka3	movlw btfsc goto goto	0x03 PORTA, 4 tipka3 glavni1		
tipka4	movlw btfsc goto goto	0x04 PORTA, 2 tipka4 glavni1		
tipka5	movlw btfsc goto goto	0x05 PORTA, 3 tipka5 glavni1		
tipka6	movlw btfsc goto goto	0x06 PORTA, 4 tipka6 glavni1		
tipka7	movlw btfsc goto goto	0x07 PORTA, 2 tipka7 glavni1		
tipka8	movlw btfsc goto goto	0x08 PORTA, 3 tipka8 glavni1		
tipka9	movlw btfsc goto goto	0x09 PORTA, 4 tipka9 glavni1		
tipkaA	movlw btfsc goto	0x0A PORTA, 2 tipkaA		

riogramski	prinijen s predavanja	
	goto glavnil	
tipka0	movlw 0x00 btfsc PORTA, 3 goto tipka0 goto glavni1	
tipkaB	movlw 0x0B btfsc PORTA, 4 goto tipkaB goto glavnil	
glavnil	movwf BROJAC call string1 andlw 0xFF btfsc STATUS, Z goto dalje call SNDCH	; Sačuvaj sadržaj W-registra (brojac) ; Uzima znak iz tablice (string1) ; O oznacava kraj znakovnog niza ; ako je O niz je ispisan do kraja ; ako je O idi na kraj ; salje znak na LCD
L1	call cekl movf BROJAC,W addlw D'1' goto pocetak	; kasnjenje ; Sadrzaj brojaca u W registar ; Uvecaj ga za 1 ; Idi na pocetak glavnog programa
dalje	nop movlw 0xC0 call SNDCMD	; ; ; naredba za prelezak u drugi red ; ;
glavni2	<pre>movlw 0x0 movwf BROJAC call string2 andlw 0xFF btfsc STATUS, Z goto kraj call SNDCH</pre>	, ; O u W, uzmi O. znak iz tablice za pocetak ; Sačuvaj sadržaj W-registra (brojac) ; Uzima znak iz tablice (string2) ; O oznacava kraj znakovnog niza ; ako je O niz je ispisan do kraja ; ako je O idi na kraj ; salje znak na LCD
L11	call cekl movf BROJAC,W addlw D'1' goto glavni2	; kasnjenje ; Sadrzaj brojaca u W registar ; Uvecaj ga za 1 ; Idi na pocetak glavnog programa
kraj	nop goto kraj	, ; ; ; Podprogram za slanje znakova na LCD (RS=1) ; Znak koji se salje na LCD nalazi se u W registru
SNDCH	nop movwf CHAR call cek1 call cek1 call cek1 movf CHAR,W andlw 0xF0 movwf PORTB bsf PORTB,RS bsf PORTB,E nop	<pre>; W -> CHAR ; cek1 ; cek1 ; cHAR -> W ; od W uzmi samo gornja 4 bita, ostalo na 0 ; Postavi gornja 4 bita W na PORTB (RB4-RB7 = D4-D7) ; Odaberi podatkovni registar ; Postavi ENABLE signal</pre>
	bcf PORTB,E swapf CHAR,W andlw 0xF0 movwf PORTB bsf PORTB,RS bsf PORTB,E nop	; ocisti ENABLE signal ; Zamjeni gornja i donja 4 bita CHAR-a i rez. u W ; od W uzmi samo gornja 4 bita, ostalo na 0 ; Postavi donja 4 bita podatka za LCD na RB4-RB7 ; Odaberi podatkvoni registar ; Postavi ENABLE signal
	bcf PORTB,E return	; Ocisti ENABLE signal ; Povratak iz potprograma

SNDCMD	<pre>movwf call call movf andlw movwf bcf bsf nop bcf call swapf andlw movwf bcf bsf nop bcf call</pre>	CHAR cek1 cek1 CHAR,W 0xF0 PORTB PORTB,RS PORTB,E cek5ms CHAR,W 0xF0 PORTB PORTB,RS PORTB,RS PORTB,E cek5ms	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	<pre>W -> CHAR pozovi cek1 pozovi cek1 CHAR -> W od W uzmi samo gornja 4 bita, ostalo na 0 postavi gornja 4 bita na RB4-RB7 = D4-D7 LCDa odaberi instrukcijski registar LCDa postavi ENABLE signal ocisti ENABLE signal zamijeni gornja i donja 4 bita CHAR, rezultat u W od W uzmi samo gornja 4 bita, ostalo na 0 postavi donja 4 bita naredbe za LCD na RB4-RB7 odaberi instrukcijski registar postavi ENABLE signal ocisti ENABLE signal</pre>	
	nop return				
LCDINIT	nop movlw call	INIT4BIT1 SNDCMD			
	movlw call	INIT4BIT2 SNDCMD			
	movlw call	FUNCSET SNDCMD	;	Function set	
	movlw call	DISPONOFF SNDCMD	;	Display ON/OFF	
	movlw call	CLEAR SNDCMD	;	Brise ekran	
	movlw call return	ENTRYMODE SNDCMD	;	Nacin rada.	
======================================	od 1ms	======================================			
========== cek1	nop goto nop movlw	cek5ms 0xFF	==		
L2	movwf nop decfsz goto return	TEMP,F L2			
======== Kašnjenje	od 5ms	(~4.5 ms) (Fo	== sc	= 4MHz) K=15, L=100	
eek5ms nop	movlw	D'15'	== ;	$K \rightarrow W$ $W \rightarrow COUNT2$	
	nop	COUNTS	;	1C	

petlja1	movlw D'100'	; K * 1C	L -> W
	movwf COUNT1	; K * 1C	W -> COUNT1
petlja2	decfsz COUNT1	; [(L-1) * 1C + 2C]	* K
	goto petlja2	; [(L-1) * 2C] * K	
	decfsz COUNT2	; (K-1) * 1C + 2C	
	goto petljal	; (K-1) * 2C	
	nop	;======================================	
	nop	; K*L*3C + K*4C - 1	С
	return		

Dodatak A. LABORATORIJSKA OPREMA

SI.A.1. Laboratorijski panel.

7-segmentni pokaznici S547AP

Služe za prikaz podataka iz mikrokontrolera.

SI.A.2 7-segmentni pokaznik.

Dodatak A. Laboratorijska oprema

1	
2	Anoda D
3	Zajednička katoda
4	Anoda C
5	Anoda DP
6	Anoda B
7	Anoda A
8	Zajednička katoda
9	Anoda F
10	Anoda G

Tab.A.1. Značenja pinova pokaznika.

LCD zasion PVC160203PYL01 (HD44780

Služi za prikaz poruka i podataka iz mikrokontrolera.

Pin broj	Simbol	U/I	Funkcija
1	Vss	U	Signal mase
2	VDD	U	Signal napajanja za logiku
3	Vo	Ι	Signal napajanja za LCD
4	RS	U	Odabir registra: H : Podatkovni, L : Instrukcijski.
5	R/W	U	Čitanje/Pisanje
6	E	U	Signal omogućavanja
7~14	DB0 ~ DB7	U	Podatkovna sabirnica
15	Α	U	Nije spojeno
16	К	U	Nije spojeno

SI.A.4. LCD zaslon.

Instrukcija	Kod								Funkcija		
пэниксіја	RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	i unceja
Čišćenje zaslona	0	0	0	0	0	0	0	0	0	1	Čisti cijeli zaslon, vraća zaslon na početak, i učitava DD RAM adresu 80H u adresno brojilo.
Zaslon/Kursor na početak	0	0	0	0	0	0	0	0	1		Vraća zaslon/kursor na početak i učitava DD RAM adresu 80H u adresno brojilo.
Postavljanje moda unosa	0	0	0	0	0	0	0	1	I/D	S	Određuje smjer pomaka kursora i zaslona. Ova instrukcija dolazi nakon svake instrukcije čitanja/pisanja podatka
Zaslon ON/OFF	0	0	0	0	0	0	1	D	С	В	Određuje hoće li zaslon i kursor biti prikazani, te da li će kursor treperiti.
Pomak Zaslona/Kursora	0	0	0	0	0	1	S/C	R/L			Pomak zaslona ili kursora za jedno mjesto.
Postavljanje moda rada	0	0	0	0	1	DL	N	F			Odabir dužine podataka, broja prikazanih redaka, i veličineprikazanih znakova.
Postavljanje adrese RAM-a	0	0	0	1	1 ACG Učit u a prist RAM					Učitavanje CG RAM adrese u adresno brojilo. Kasniji pristup podatku je za CG RAM podatak.	
Postavljanje adrese DD RAM-a	0	0	1	ADD ADD ADD ADD ADD ADD ADD ADD ADD ADD						Učitavanje DD RAM adrese u adresno brojilo. Kasniji pristup podatku je za DD RAM podatak.	
Zastavica zauzeto/ Čitanje adresnog brojila	0	1	BF	Čitanje zastavice zauze AC (BF) i sadržaja adres brojila.						Čitanje zastavice zauzetosti (BF) i sadržaja adresnog brojila.	
CG RAM/ DD RAM upis podatka	1	0		Upis podatka Upis podatka u CG RAM ili DD RAM.							
CG RAM/ DD RAM čitanje podatka	1	1		Čitanje podatka iz CG RAM- a ili DD RAM-a.							
	I/D I/D S D C B	= 1 : F = 0 : F = 1 : U = 1 : U = 1 : U = 1 : U = 1 : U	'omak kursora ili zaslona udesno 'omak kursora ili zaslona ulijevo Jključen pomak zaslona Jključen zaslon Jključen prikaz kursora						DD RAM : RAM podataka zaslona CG RAM : RAM generatora znakova		

Dodatak A. Laboratorijska oprema

S/C	= 1 : Pomak zaslona	
S/C	= 0 : Pomak kursora	ACG:RAMadresa
R/L	= 1 : Pomak udesno	generatora znakova
R/L	= 0 : Pomak ulijevo	
DL	= 1 : 8 bitni mod rada	ADD : RAM adresa podataka
DL	= 0 : 4 bitni mod rada	zaslona
N	= 1 : Mod rada s dva retka na zaslonu	
N	= 0 : Mod rada s jednim retkom na zaslonu	AC : adresno brojilo
F	= 1 : Veličina znaka od 5x10 točkica	-
F	= 0 : Veličina znaka od 5x8 točkica	
BF	= 1 : Unutarnje izvršavanje instrukcije (zauzeto)	
BF	= 0 : Spreman za instrukciju	

Napomena: Simbol " " na mjestu bita znači da je vrijednost dotičnog bita nevažna.

Tab.A.3. Skup instrukcija LCD zaslona.

Mikrokontroler PIC16F84

	L)
1	•RA2	RA1 18
2	RA3	RA017
3	RA4/T0CKI	OSC1/CLKIN 16
4	MCLR	OSC2/CLKOUT 15
5	vss PIC1	6F84 Vdd 14
6	RB0/INT	RB7 13
7	RB1	RB612
8	RB2	RB511
9	RB3	RB410

SI.A.5. Dijagram pinova.

Oznaka pina	DIP br.	SOIC br.	U/I tip	Tip međuspremnika	Opis
OSC1/CLKIN	16	16	U	ST/CMOS	Ulaz kristalnog oscilatora/ulaz vanjskog izvora takta.
OSC2/CLKOUT	15	15	I	_	Izlaz kristalnog oscilatora. Spaja se na kristal ili rezonator u modu rada kristalnog oscilatora. U RC modu, OSC2 pin daje na izlazu CLKOUT koji je 1/4 frekvencije od OSC1, i predstavlja mjeru instrukcijskog ciklusa.
MCLR	4	4	U	ST	"Master clear" (reset) ulaz/naponski ulaz za programiranje. Ovaj pin je aktivan na nisku razinu i služi za reset uređaja.
RA0	17	17	U/I	TTL	PORTA je dvosmjerni U/I port.
RA1	18	18	U/I	TTL	
RA2	1	1	U/I	TTL	
RA3	2	2	U/I	TTL	
RA4/T0CKI	3	3	U/I	ST	Može biti odabran da bude ulazni takt za TMR0 timer/brojilo. Izlaz je tipa otvorenog odvoda.
RB0/INT	6	6	U/I	TTL/ST	

Dodatak A. Laboratorijska oprema

RB1	7	7	U/I	TTL	PORTB je dvosmjerni U/I port. Može biti softverski
RB2	8	8	U/I	TTL	programiran za unutarnji "slabi pull-up" na svim
RB3	9	9	U/I	TTL	ulazima.
RB4	10	10	U/I	TTL	RB0/INT može biti odabran kao vanjski prekidni
RB5	11	11	U/I	TTL	pin.
RB6	12	12	U/I	TTL/ST	RB4 do RB7 su pinovi koji mogu generirati prekid kod promjene stanja na pinu.
RB7	13	13	U/I	TTL/ST	Takt za serijsko programiranje. Podaci za serijsko programiranje.
VSS	5	5	—		Signal mase.
VDD	14	14	—	_	Signal pozitivnog napajanja.

Tab.A.4. Značenja pinova.

Dodatak B. REGISTRI MIKROKONTROLERA

Adresa reg	istra	Aa	lresa registra
00h	Neizravno adresiranje	Neizravno adresiranje	80h
01h	TMR0	OPTION	- 81h
02h	PCL	PCL	- 82h
03h	STATUS	STATUS	- 83h
04h	FSR	FSR	- 84h
05h	PORTA	TRISA	- 85h
06h	PORTB	TRISB	- 86h
07h			- 87h
08h	EEDATA	EECON1	- 88h
09h	EEADR	EECON2	- 89h
0Ah	PCLATH	PCLATH	- 8Ah
0Bh	INTCON	INTCON	- 8Bh
0Ch	68 registara opće namjene (GPR) (SRAM)	Mapirani registri iz Bank 0	- 8Ch
4Fh			CFh
50h			D0h
7Fh	Bank 0	Bank 1	FFh

Adres a	Naziv	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Bank 0									
00h	INDF	Korist	i sadržaj FS	SR regist	ra za adr fizički r	esiranje po egistar)	datkovne	memoi	ije (nije
01h	TMR0		8	8-bitni sa	t/brojilo u	i realnom v	remenu		
02h	PCL		Do	njih 8 bit	ova progr	amskog br	ojila (PC)		
03h	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С
04h	FSR	F	Pokazivač :	za neizra	ivno adre	siranje pod	latkovne i	memori	je
05h	PORTA	-	-	-	RA4/ T0CK I	RA3	RA2	RA1	RA0
06h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0/IN T
07h			Nije implementiran (čita se kao "0'")						
08h	EEDATA			Regis	tar podata	aka EEPRC	DM-a		
09h	EEADR		Adresni registar EPROM-a						
0Ah	PCLATH	-	Gornjih 5 bitova programskog brojila						orojila
0Bh	INTCON	GIE	EEIE	TOIE	INTE	RBIE	TOIF	INT F	RBIF
Bank 1									
80h	INDF	Korist	i sadržaj FS	SR regist	ra za adr fizički r	esiranje po egistar)	datkovne	memor	ije (nije
81h	OPTION_RE G	RBPU	INTED G	TOC S	TOSE	PSA	PS2	PS1	PS0
82h	PCL			Donjih 8	bitova pr	ogramskog	j brojila		
83h	STATUS	IRP	RP1	RP0	IO	PD	Z	DC	С
84h	FSR	F	Pokazivač :	za neizra	ivno adre	siranje poc	latkovne	memori	je
85h	TRISA	-	-	-		Registar	smjera p	orta A	
86h	TRISB			Re	gistar sm	jera porta E	3		
87h				Nije imp	lementira	n (čita se k	ao "0")		
88h	EECON1	-	-	-	EEIE	WRER R	WRE N	WR	RD
89h	EECON2			Drugi ko	ntrolni re	gistar EEP	ROM-a		
8Ah	PCLATH	-	-	-	Gor	njih 5 bitov	a prograr	nskog t	orojila
8Bh	INTCON	GIE	EEIE	TOIE	INTE	RBIE	TOIF	INT F	RBIF

STATUS REGISTAR (ADRESA 03h, 83h)

R/V	V-0	R/W-0	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x	_
IR	P	RP1	RP0	TO	PD	Z	DC	С	
bi	t7							bit0	
	1. 14		- X - X'I - I'						
R = W :	= bit	koji se m koji se m	ioze citati 1ože pisati						
U =	bit	koji nije	implemen	itiran, či	ta se ka	ao "0"			
- n	= VI	rijednost	i na POR i	reset					
bit 7:									
	IF	RP: Bit z	a odabir b	ank-a (ł	koristi s	e za neiz	ravno ac	dresiranj	e)
	0	= Bank	0, 1 (00n · 2, 3 (100h	- FFN) 1 - 1FFh)				
	İF	RP bit se	e ne koristi	kod Pl	, C16F8X	(. Ovaj bi	t treba b	iti obrisa	ın.
bit 6-5	: _		D ''						
	0	P1:RP0 0 = Bank	: Bit za od k 0 (00h -	labir bar 7Fh)	ък-а (ко	oristi se z	a izravno	o adresir	anje)
	0	1 = Banł	k 1 (80h -	FFh)					
	1	0 = Banł	k 2 (100h	- 17Fh)					
	1	1 = Banł vaki ban	k 3 (180n · ok je veliči	- 1FFN) ne 128 l	naita S	amo hit F	RPN se k	oristi ko	d PIC16E8X_Bit RP1 treba biti obrisan
bit 4:	0	vaixi bali			Jujiu. O				
	Ŧ	O: Bit is	steka vren	nena (ei	ngl. Tim	ne-out bit)		
	1	= Nakor	n dovođen	ija pod r	napon,	CLRWD	「instruko	cije, ili S	LEEP instrukcije
bit 3·	0	= Kod V	VDT ISteka	a vreme	na				
on o.	Ē	D: Bit s	signalizaci	ie napai	ania (e	nal. Powe	er-down	bit)	
	1	= Nakor	n dovođen	ja pod r	apon il	i kod CLF	RWDT in	strukcije	
L:1 O.	0	= Kod iz	zvršenja S	LEEP ir	nstrukci	je			
DIL Z.	z	: Bit nule	e (enal. Ze	ero bit)					
	1	= Rezul	tat aritmet	tičke ili l	ogičke	operacije	je nula	0	
h;+ 1.	=	Rezulta	t aritmetič	ke ili log	jičke op	peracije n	ije nula		
DIL I.	D	C: Bit pr	riienosa/po	osuđiva	nia kod	doniih 4	bita (enc	al. Diait a	carry/borrow bit) (kod ADDWF i ADDI W
	in	strukcija	a)		.j			,g	
	1	= Pojav	io se prije	nos kod	4 niža	bita u rez	zultatu	.+	
bit 0:	0	= Nije S	e pojavio j	phjenos	KUU 4 I	iiza dila		itu	
	C in 0	: Bit prije strukcija = Nije s	enosa/pos a) 1 = Poja e pojavio	suđivanja avio se p prijenos	a (engl. prijenos kod na	Carry/bo kod najv ijvažnijeg	orrow bit ažnijeg l i bita u re) (kod Al bita u re: ezultatu	DDWF i ADDLW zultatu

OPTION_REG REGISTAR (ADRESA 81h)

R/W	/-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	-
RBP	U	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	
bit	7							bit0	
R = W = U = "0" -	bit ko bit ko bit ko n = `	ji se može o oji se može oji nije impl Vrijednost	čitati pisati ementira na POR	n, čita se reset	kao				
bit 7:									
bit 6:	RB 1= 0=	PORTB "p PORTB "p PORTB "p	ՐB "Pull-ւ pull-up"- օ pull-up"-i	up" bit omo onemoguć omoguće	ogućavan čeni ni	ja			
bit 5:	INT bit) 0 =	EDG : Bit c 1 = Prekid Prekid na	dabira b na rastu padajući	rida okida ći brid na brid na R	nja prekio RB0/INT B0/INT pi	da (engl. pin n	Interrupt	Edge Sel	ect
	T00 bit) 0 =	CS : TMR0 1 = Promje Takt na ur	bit odabi ena na R nutarnji ir	ra izvora t A4/T0CKI istrukcijsk	akta (eng pinu i ciklus (C	I. TMR0 (CLKOUT)	Clock So	urce Sele	ct
DIT 4:	T09 bit) 0 =	SE : TMR0 I 1 = Poveć Povećanje	oit odabii anje na p na prom	ra brida iz promjenu s njenu s "ni	vora (eng s "visokoo iskog" u "	l. TMR0 S g" u "nisko visoko" n	Source E o" na RA4 a RA4/T0	dge Sele 4/T0CKI p CKI pinu	ct pinu
bit 2-0.	PS/ bit) 0 =	A : Bit pridro 1 = Predje Predjelilo (uživanja lilo dodijo dodijeljer	predjelila eljeno WE no TMR0-	(engl. Pre)T-u u	escaler A	ssignmer	t	

bit 2-0: **PS2:PS0**: Bitovi odabira vrijednosti predjelila (engl. Prescaler Rate Select bits)

Vrijednosti bitova	TMR0	WDT
000	1:2	1:1
001	1:4	1:2
010	1:8	1:4
011	1:16	1:8
100	1:32	1:16
101	1:64	1:32
110	1:128	1:64
111	1:256	1:128

INTCON REGISTAR (ADRESA 0Bh, 8Bh)

	R/W-	-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		R/W-0	F	R/W-x	
	GIE		EEIE	TOIE	INTE	RBIE	TOII	-	INTF		RBIF	
	bit7	,									bit0	
Г				v vii					7			
	R = b	bit k	oji se mo	že čitati								
		nit k	oji se mo	nnlement	liran čita	se kao '	' O "					
	- n =	Vri	iednost r	na POR r	eset		0					
L									1			
bit	7:											
		GI	E: Bit glo	balnog o	moguća	/anja pre	kida (e	ngl.	Global	Int	terrupt l	Enable
		bit) 1 = Om	logućava	nje svih r	nemaskir	anih pr	ekida	а			
L : 4	•	0 =	= Onemo	gucavan	le svih pr	ekida						
DI	6:			moguóou	onio prol	ida kad	- ovrčat	ko n	iconio	г		M (and EE) (rite Complete Interrupt
		E	ahle hit)	mogucav	alija pler	Nua kuu	Zavisei	καp	isanja (EEFKU	ivi (eligi. EE white Complete interrupt
		1:	= Omoau	ićavanie i	orekida k	od završ	etka pi	sania	a u FFF	PR	MON	
		0 =	= Onemo	gućavan	e prekida	a kod zav	vršetka	pisa	inja u E	E	PROM	
bit	5:							•				
		ТО	IE: Bit or	mogućava	anja prek	ida kod j	oreljeva	i TM	IR0-a (e	eng	gl. TMR	0 Overflow Interrupt Enable
		bit) 1 = Om	logućava	nje prekio	da kod p	reljeva	TMF	R0-a			
		0 =	= Onemo	gućavanj	je prekida	a kod pre	eljeva T	MRC)-a			
bit	4:					ida a F				. /11		
		IN bit	1 E : Bit 0	mogucav	anja prek	(lda na F da na RF		(en	IGI. RBU)/II	NI Intel	rrupt Enable
		0 =	= Onemo	oućavan	ie prekidz	a na RB()/INT					
bit	3:	Ũ	oneme	guouvanj			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
	-	RE	BIE: Bit o	mogućav	anja prel	kida kod	promje	ne n	na pinu i	na	a portu E	3 (engl. RB Port Change Interrupt
		Er	able bit)	U							•	
		1 =	= Omogu	ićavanje j	prekida k	od prom	jene na	pinı	u na po	rtu	ıВ	
	~	0 =	= Onemo	gućavanj	je prekida	a kod pro	omjene	na p	oinu na	рс	ortu B	
bit	2:					T1 (D o	, .		D .0		• .	
		10	IF: Bit pr	rekida ko	d preljeva	a IMR0-a	a (engl.	I M I	R0 ovei	rtic	ow inter	rupt flag
		0.) I = Fie - Nema i	njev kou Proliova k	od TMR	ົງເມດເສ ມແ ງ-ອ	oprisa	11 50	niverski)		
bit	1.	0 -		Jieljeva k		J-a						
		IN	TF: Bit za	astavice i	orekida n	a RB0/IN	IT (ena	I. RE	B0/INT	Int	terrupt I	Flag
		bit) 1 = Prir	njećen pi	ekid na F	RB0/INT	(⁻ 5					
		0 =	= Nije pri	mjećen p	rekid na	RB0/INT						
bit	0:											
		RE	BIF: Bit z	astavice	prekida k	od prom	jene na	pin	ovima p	00	rta B (e	ngl. RB Port Change Interrupt Flag
		bit) 1 = Kao	d je najma	anje na je	ednom o	d pina F	KB7:	RB4 sta	an	je prom	ujenjeno (mora biti obrisan softverski)

0 = Nema promjene stanja na nijednom od pina RB7:RB4

EECON1 REGISTAR (ADRESA 88h)

U	U	U	R/W-0	R/W-xR/	W-0	R/S-0	R/S-x			
	—		EEIF	WRERR	WREN	WR	RD			
bit7	,						bit0	_		
D -	bit koi	icom	ožo čitoti				7			
W =	= bit ko	ii se n	nože pisat	ti						
S =	bit ko	ji se r	nože pos	tavljati						
U =	bit ko	ji nije	impleme	ntiran, čita :	se kao "0"	1				
- n	= Vrije	dnos	t na POR	reset						
hit 7.5										
511 7.0	Nisu	u imp	lementir	ani: Čitaju :	se kao "0"	1				
bit 4:								. –		
	EEII	F: Bit 1 – ∩	zastavice	e prekida ko	id pisanja rčono (mo	u EEPR	OM (eng	gl. E	EEPROM Write Operation Interrupt Flag	
	0 = 0	Opera	aciia pisa	nia niie zav	ršena ili n	iie počel	a a	iive		
bit 3:	•			. j= j=		.)-	-			
	WR	ERR:	Bit zasta	vice greške	kod pisar	nja u EE	PROM (engl	gl. EEPROM Error Flag bit)	
	1 = 0	Opera	acija pisa	nja prijevrei	neno zav	ršila (sva	aki MCI	LR	reset ili svaki WDT reset tijekom normalnog	ļ
rada)		~								
hit 2.	0 = 0	Opera	acija pisa	nja završila						
DIL Z.	WR	EN · F	Rit omogu	ćavania nis	ania u FF	PROM (onal EE		20M Write Epoble	
	bit)	1 = 0	moqućen	i ciklus pisa	nja u LL					
	0 =	Onen	nogućen (ciklus pisan	ja					
bit 1:		D '' I		, .	M O					
	WR:	BIT K	controle p	isanja (engl		ontrol bit)) : .:			
	hiti s	POKIE	nostavlie	usa pisanja n (ne obris:	an) softve	/i-a (ovaj rski)	j bit je ot	JUSS	an hardverski kad zavrsi pisanje; WR bit moz	.e
	0 =	Ciklus	s pisanja	u EEPRON	l je završe	en				
bit 0:										
	RD:	Bit k	ontrole čit	tanja (engl.	Read Cor	ntrol bit)				
	1 =	Pokre	etanie cikl	usa čitania	LEPRON	I-a (čitan	ne traie i	eda	an ciklus: RD ie obrisan hardverski: RD bit	

RD bit is; RD je Ι, aje je 0 = Ne pokreće se čitanje EEPROM-a

KONFIGURACIJSKA RIJEČ - PIC16F83 I PIC16F84

R/P-	R/P-	R/P-	R/P-	R/P-	R/P-	R/P-	R/P-	R/P-	R/P-	R/P-u	R/P-u	R/P-u	R/P-u
u	u	u	u	u	u	u	u	u	u				
CP	CP	CP	CP	CP	CP	CP	CP	CP	CP	PWRTE	WDTE	FOSC1	FOSC0
bit13													bit0

R = bit koji se može čitati

P = bit koji se može programirati

n = Vrijednost na POR reset

u = bit koji se ne može promijeniti

bit 13:4:

CP: Bitovi zaštite koda (engl. Code Protection

- bit) 1 = Zaštita koda je isključena
- 0 = Cijela memorija je zaštićena

bit 3:

PWRTE : Bit omogućavanja mjerača vremena kod dovođenja pod napon (engl. Power-up Timer Enable

bit)

- 1 = Mjerač vremena je onemogućen
- 0 = Mjerač vremena je omogućen

bit 2:

WDTE: Bit omogućavanja "Watchdog" mjerača vremena (engl. Watchdog Timer Enable bit) 1 = WDT omogućen

0 = WDT onemogućen

bit 1:0:

FOSC1:FOSC0: Bitovi odabira oscilatora (engl. Oscillator Selection

- bits) 11 = RC oscilator
- 10 = HS oscilator
- 01 = XT oscilator
- 00 = LP oscilator

Registar	Registar Adresa Reset kod dovođenja pod napon MCLR reset tijekom: - normalnog rada Kegistar Adresa Pod napon - SLEEP-a WDT reset tijekom - Normalnog rada		"Buđenje" iz SLEEP-a: - pomoću prekida - pomoću WDT isteka vremena	
W	—	XXXX XXXX	սսսս սսսս	սսսս սսսս
INDF	00h			
TMR0	01h	XXXX XXXX	սսսս սսսս	սսսս սսսս
PCL	02h	0000h	0000h	PC + 1
STATUS	03h	0001 1xxx	000q quuu	uuuq quuu
FSR	04h	XXXX XXXX	սսսս սսսս	սսսս սսսս
PORTA	05h	x xxxx	u uuuu	u uuuu
PORTB	06h	XXXX XXXX	սսսս սսսս	սսսս սսսս
EEDATA	08h	XXXX XXXX	սսսս սսսս	սսսս սսսս
EEADR	09h	XXXX XXXX	սսսս սսսս	սսսս սսսս
PCLATH	0Ah	0 0000	0 0000	u uuuu
INTCON	0Bh	0000 000x	0000 000u	սսսս սսսս
INDF	80h			
OPTION_REG	81h	1111 1111	1111 1111	սսսս սսսս
PCL	82h	0000h	0000h	PC + 1
STATUS	83h	0001 1xxx	000q quuu	uuuq quuu
FSR	84h	XXXX XXXX	սսսս սսսս	սսսս սսսս
TRISA	85h	1 1111	1 1111	u uuuu
TRISB	86h	1111 1111	1111 1111	սսսս սսսս
EECON1	88h	0 x000	0 q000	0 uuuu
EECON2	89h			
PCLATH	8Ah	0 0000	0 0000	u uuuu
INTCON	8Bh	0000 000x	0000 000u	սսսս սսսս

RESET STANJA ZA SVE REGISTRE

Dodatak C. SKUP INSTRUKCIJA MCU PIC16F84

Instru	kcija	Opis	trajanje u strojnim ciklusima	utječe na STATUS bitove:
		Instrukcije s bajtovima		
addwf	f,d	Zbrajanje sadržaja akumulatora i registra f	1	C,DC,Z
andwf	f,d	Logički "I" sadržaja akumulatora i registra f	1	Z
clrf	f	Brisanje sadržaja registra f	1	Z
clrw		Brisanje sadržaja akumulatora	1	Z
comf	f,d	Komplement sadržaja registra f	1	Z
decf	f,d	Smanjenje sadržaja registra f za 1	1	Z
decfsz	f,d	Smanjenje sadržaja registra f za 1, preskakanje sljedeće instrukcije ako je rezultat 0	1(2)	nijedan
incf	f,d	Povećanje sadržaja registra f za 1	1	Z
incfz	f,d	Povećanje sadržaja registra f za 1, preskakanje sljedeće instrukcije ako je rezultat 0	1(2)	nijedan
iorwf	f,d	Uključivi "ILI" sadržaja akumulatora i registra f	1	Z
movf	f,d	Premještanje sadržaja registra f	1	Z
movwf	f	Premještanje sadržaja akumulatora u registar f	1	nijedan
nop		Bez djelovanja	1	nijedan
rlf	f,d	Rotiranje sadržaja registra f ulijevo kroz "Carry"	1	С
rrf	f,d	Rotiranje sadržaja registra f udesno kroz "Carry"	1	С
subwf	f,d	Oduzimanje sadržaja akumulatora od registra f	1	C,DC,Z
swapf	f,d	Zamjena donja i gornja 4 bita registra f	1	nijedan
xorwf	xorwf f,d Isključivo "ILI" sadržaja akumulatora i registra f		1	Z
		Instrukcije s bitovima		
bcf	f,b	Brisanje bita b registra f	1	nijedan
bsf	f,b	Postavljanje bita b registra f	1	nijedan
btfsc	f,b	Testiranje bita b registra f, preskakanje sljedeće instrukcije ako je bit obrisan	1(2)	nijedan
btfss	f,b	Testiranje bita b registra f, preskakanje sljedeće instrukcije ako je bit postavljen	1(2)	nijedan
		Instrukcije s konstantama i kontrole instrukcije		
addlw	k	Zbrajanje sadržaja akumulatora i konstante k	1	C,DC,Z
andlw	k	Logički "I" sadržaja akumulatora i konstante k	1	Z
call	k	Poziv potprograma	2	
clwrdt		Brisanje "Watchdog timer"-a	1	<u>TO</u> , PD
goto	k	Bezuvjetno grananje programa	2	nijedan
iorlw	k	Uključivi "ILI" sadržaja akumulatora i konstante k	1	Z
movlw	k	Upisivanje konstante k u akumulator	1	nijedan
retfie		Povratak iz prekidne rutine	2	nijedan
retlw	k	Povratak iz potprograma s vrijednošću k u akumulatoru	2	nijedan
return		Povratak iz potprograma	2	nijedan
sleep		Postavljanje procesora u "standby" mod	1	<u>70</u> , PD
sublw	k	Oduzimanje sadržaja akumulatora od konstante k	1	C,DC,Z
xorlw	k	Isključivo "ILI" sadržaja akumulatora i konstante k	1	Z

ADDLW Dodavanje konstante u W

Sintaksa:	[labela] ADDLW k
Operand:	0 k 255
Djelovanje:	(W) + k (W)
Zastavica:	C, DC, Z

1

1

Kodiranje:

11 111x kkkk kkkk

Opis: Sadržaj W registra dodaje se osam bitnoj konstanti 'k', a rezultat se sprema u W registar.

Broj riječi:

Broj ciklusa:

Q taktovi:

Q1	Q2	Q3	Q4		
Dekodiranje	Čitanje konstante 'k'	Obrada podataka	Spremanje u W		

Primjer:	ADDLW 0x15
Prije instrukcije	W = 0x10
Nakon instrukcije	W = 0x25

ANDLW Logički "I" konstante s W

Sintaksa:	[labela] ANDLW k	
Operand:	0 k 255	
Djelovanje:	(W) .AND. (k)(W)	
Zastavica:	Z	

Kodiranje: 11

1001 kkkk kkkk

Opis: Izvodi se logička "I" operacija između sadržaja registra W i osam bitne konstante 'k'. Rezultat se sprema u W registar.

Broj riječi: Broj ciklusa:

Q taktovi:

Q1	Q2	Q3	Q4
Dekodiranje	Čitanje konstante 'k'	Obrada podataka	Spremanje u W

Primjer	ANDLW 0x5F
Prije instrukcije	W = 0xA3
Nakon instrukcije	W = 0x03

1

1

ADDWF Zbrajanje W i f

Sintaksa:	[labela] ADDWF f,d
Operand:	0 f 127
	d E [0,1]
Djelovanje:	(W) + (f)(odredište)
Zastavica:	C, DC, Z

Kodiranje:

	00	0111	dfff	ffff	
\sim	nia: Dada	io oodržoj	W/ register	o rogiotru	1.0

Opis: Dodaje sadržaj W registra registru 'f'. Ako je 'd' jednak 0 rezultat se sprema u W registar, a ako je 'd' jednak 1 rezultat se sprema u registar 'f'.

Broj riječi: Broj ciklusa:

Q taktovi:

_				
	Q1	Q2	Q3	Q4
	Dekodiranje	Čitanje registra 'f'	Obrada podataka	Spremanje u odredište

Primjer	ADDWF FSR, 0	
Prije instrukcije	W = 0x17	FSR = 0xC2
Nakon instrukcije	$W = 0 \times D9$	FSR = 0xC2

ANDWF Logički "I" W s f

1

1

Sintaksa:	[labela] ANDWF f,d
Operand:	0 f 127
	d € [0,1]
Djelovanje:	(W) .AND. (f)(odredište)
Zastavica:	Ž

Kodiranje:

00 0101 dfff ffff Opis: Izvodi se logička "I" operacija između W registra i registra 'f'. Ako je 'd' jednak 0 rezultat se sprema u W registar, a ako je 'd' jednak 1 rezultat se sprema u registar 'f'.

Broj riječi: 1 Broj ciklusa: 1 Q taktovi: Q2 Q1 Q3 Dekodiranje Čitanje registra 'f' Obrada podataka Spremanje u odredište

Primjer	ANDWF FSR, 1	
Prije instrukcije	W = 0x17	FSR = 0xC2
Nakon instrukcije	W = 0x17	FSR = 0x02

Q4

Dodatak C.	Skup instrukcija	a mikrokontrolera	PIC16F84
------------	------------------	-------------------	----------

	,		
BCF	Brisanje bita u f		
Sintaksa: Operand:	[labela] BCF f,b 0 f 127 0 b 7		
Djelovanje: Zastavica:	0 (f) Nijedna		
Kodiranje: 01 00 Opis: Bit 'b' u re)bb bfff ffff egistru 'f' je obrisan.		
Broj riječi: Broj ciklusa: Q taktovi:	1		
Q1	Q2	Q3	Q4
Dekodiranje	Citanje registra T	Obrada podataka	Spremanje u registar T
Primjer Prije instrukcije Nakon instrukc	BCF FLAG_ FLAG_REG ije FLAG_REG	_REG, 7 5 = 0xC7 5 = 0x47	
BSF	Postavljanje bita u	f	
Sintaksa: Operand:	[labela] BSF f,b 0 f 127 0 b 7		
Djelovanje: Zastavica:	1 (f) Nijedna		
Kodiranje: 01 01 Opis: Bit 'b' u re	bb bfff ffff egistru 'f' je postavlje		
Broj riječi: Broj ciklusa: Q taktovi:	1		
Q1 Dekodiranje	Q2 Čitanje registra 'f'	Q3 Obrada podataka	Q4 Spremanje u registar 'f'
Primjer Prije instrukcije Nakon instrukc	BSF FLAG_ FLAG_REG ije FLAG_REG	REG, 7 = 0x0A = 0x8A	

BTFSC Testiranje bita u f, preskakanje ako je obrisan

Sintaksa:	[labela] BTFSC f,b		
Operand:	0 f 127		
	0 b 7		
Djelovanje: Zastavica:	preskakanje ako je (f) = 0 Nijedna		

Kodiranje:

01	10bb	bfff	ffff

Opis: Ako je bit 'b' u registru 'f' jednak 1 tada se sljedeća instrukcija izvodi. Ako je bit 'b' u registru 'f' jednak 0 tada se sljedeća instrukcija preskače, i umjesto nje se izvodi NOP instrukcija (što čini ovu instrukciju dvociklusnom).

Broj riječi: 1 1(2)

Broj ciklusa:

Q	taktovi:	
	2	0

Q1	Q2	Q3	Q4
Dekodiranje	Čitanje registra 'f'	Obrada podataka	Bez djelovanja

Ako se preskače: (2. Ciklus)

	Q1	Q2	Q3	Q4	
	Bez djelovanja	Bez djelovanja	Bez djelovanja	Bez djelovanja	
Ρ	rimjer	OVDJE BTF	SC ZASTAVICA,	, 1	
		ISTINA •			
		•			
		•			
Ρ	rije instrukcije	PC = adresa	a od OVDJE		
N	akon instrukcije	ako je ZAST ako je ZAST	AVICA<1> = 0, ΓΑVICA<1> = 1,	PC = adresa c PC = adresa c	od ISTINA od LAZ

Dodatak C.Skup instrukcija mikrokontrolera PIC16F84BTFSSTestiranje bita u f, preskakanje ako je postavljen

Sintaksa:	[labela] BTFSS f,b
Operand:	0 f 127
	0 b 7
Djelovanje:	preskakanje ako je (f) = 1
Zastavica:	Nijedna

Kodiranje:

01	11bb	bfff	ffff

Opis: Ako je bit 'b' u registru 'f' jednak 0 tada se sljedeća instrukcija izvodi. Ako je bit 'b' u registru 'f' jednak 1 tada se sljedeća instrukcija preskače, i umjesto nje se izvodi NOP instrukcija (što čini ovu instrukciju dvociklusnom).

Broj riječi: 1 Broj ciklusa: 1(2)

Q taktovi:

Q1	Q2	Q3	Q4
Dekodiranje	Čitanje registra 'f'	Obrada podataka	Bez djelovanja

Ako se preskače: (2. Ciklus)

	Q1	Q2	Q3	Q4	
	Bez djelovanja	Bez djelovanja	Bez djelovanja	Bez djelovanja	
Ρ	rimjer	OVDJE BTF	SS ZASTAVICA,	1	
		ISTINA			
		•			
		•			
		•			
P N	rije instrukcije akon instrukcije	PC = adresa ako je ZAST ako je ZAST	a od OVDJE AVICA<1> = 0, FAVICA<1> = 1,	PC = adresa o PC = adresa o	d LAZ d ISTINA

Dodatak C.Skup instrukcija mikrokontrolera PIC16F84CALLPoziv potprograma

[labela] CALL k
0 k 2047
(PC) + 1TOS, kPC<10:0>,
(PCLATH<4:3>)PC<12:11>
Nijedna

Kodiranje:

16						
	10	0kkk	kkkk	kkkk		

1

2

Opis: Pozivanje potrograma. Prvo se na stog sprema adresa povratka (PC+1). Jedanaest bitova neposrednog adresiranja učitava se u PC bitove <10:0>. Gornji bitovi PC-a učitavaju se iz PCLATH-a. CALL je dvociklusna instrukcija.

Broj riječi: Broj ciklusa: Q taktovi:

	Q1	Q2	Q3	Q4
1. Ciklus	Dekodiranje	Čitanje konstante 'k', Spremanje PC-a na stog	Obrada podataka	Spremanje u PC
2. Ciklus	Bez djelovanja	Bez djelovanja	Bez djelovanja	Bez djelovanja

Primjer	OVDJE CALL TAMO
Prije instrukcije	PC = adresa od OVDJE
Nakon instrukcije	PC = adresa od TAMO

TOS = adresa od OVDJE+1

CLRF Brisanje registra f

Sintaksa:	[labela] CLRF f
Operand:	0f 127
Djelovanje:	00h(f)
	1 Z
Zastavica:	Z

1

1

Kodiranje:

00 0001 1fff ffff Opis: Sadržaj registra 'f' je obrisan i postavljen je bit Z.

Broj riječi: Broj ciklusa:

Q taktovi:

Q1	Q2	Q3	Q4
Dekodiranje	Čitanje registra 'f'	Obrada podataka	Spremanje u registar 'f'

Primjer	CLRF FLAG_REG	
Prije instrukcije	FLAG_REG = 0x5A	
Nakon instrukcije	$FLAG_REG = 0x00$	Z =1

Dodatak C.	Skup instrukci	ja mikrokontrolera	PIC16F84

Bodatak C. Ok			J-F	
CLRW	Brisanje registra	a W		
Sintaksa: Operand:	[labela] CLRW Nijedan			
Djelovanje:	00h(W) 1 Z			
Zastavica:	Z			
Kodiranje: 00 00 Opis: W regista	01 0xxx x r je obrisan. Bit nu	xxx Ile (Z) je postavljen.		
Broj riječi: Broj ciklusa: Q taktovi:	1 1			
Q1	Q2	Q3	Q4	
Dekodiranje	Bez djelovanja	Obrada podataka	Spremanje u W	
PrimjerCLRWPrije instrukcije $W = 0x5A$ Nakon instrukcije $W = 0x00$ $Z = 1$				
CLRWDT	Brisanje "Watch	dog Timer"-a		
Sintaksa: Operand: Djelovanje:	[labela] CLRWDT Nijedan 00h WDT 0 WDT prescaler, 1 TO 1 PD TO TO	-		
Lasiavica.	10, PD			
Kodiranje:				
00 00	000 0110	0100		

00000001100100Opis: CLRWDT instrukcija resetira "Watchdog Timer".Također resetira i predjelilo WDT-a. Status bitovi TO i PD su postavljeni.

Broj riječi: 1 Broj ciklusa: 1

Q	taktovi:			
	Q1	Q2	Q3	Q4
	Dekodiranje	Bez djelovanja	Obrada podataka	Brisanje WDT brojača

Primjer	CLRWDT	
Prije instrukcije	WDT brojač = ?	
Nakon instrukcije	WDT brojač = 0x00	WDT predjelilo= 0
	$\overline{TO} = 1$	$\overline{PD} = 1$

Dodatak C.Skup instrukcija mikrokontrolera PIC16F84COMFKomplement f

Sintaksa:	[labela] COMF f,d
Operand:	0 f 127
·	d € [0,1]
Djelovanje:	(f)(odredište)
Zastavica:	Z

1 1

Kodiranie:

00	1001	dfff	ffff

Opis: Sadržaj registra 'f' se komplementira. Ako je 'd' jednak 0 rezultat se sprema u W, a ako je 'd' jednak 1 rezultat se sprema u registar 'f'.

Broj riječi: Broj ciklusa:

Q taktovi:

Q1	Q2	Q3	Q4
Dekodiranje	Čitanje registra 'f'	Obrada podataka	Spremanje u odredište

Primjer	COMF REG1,0	
Prije instrukcije	REG1 = 0x13	
Nakon instrukcije	REG1 = 0x13	W = 0xEC

DECF Smanjenje za 1 registra f

Sintaksa:	[labela] DECF f,d
Operand:	0f 127
-	d € [0,1]
Djelovanje:	(f) – 1 (odredište)
Zastavica:	Z

1

1

Kodiranje:

00 0011 dfff ffff Opis: Smanjenje sadržaja registra 'f' za 1. Ako je 'd' jednak 0 rezultat se sprema u W, a ako je 'd' jednak 1 rezultat se sprema u registar 'f'.

Broj riječi:

Broj ciklusa:

Q taktovi:

Q1	Q2	Q3	Q4
Dekodiranje	Čitanje registra 'f'	Obrada podataka	Spremanje u odredište

Primjer	DECF CNT, 1	
Prije instrukcije	CNT = 0x01	Z = 0
Nakon instrukcije	CNT = 0x00	Z = 1

Dodatak C.Skup instrukcija mikrokontrolera PIC16F84DECFSZSmanjenje za 1 registra f, preskakanje ako je 0

Sintaksa:	[labela] DECFSZ f,d
Operand:	0 f 127
	d € [0,1]
Djelovanje:	(f) – 1 (odredište);
	preskakanje ako je rezultat = 0
Zastavica:	Nijedna

Kodiranje:

00	1011	dfff	ffff

Opis: Sadržaj registra 'f' se smanjuje za 1. Ako je 'd' jednak 0 rezultat se sprema u W, a ako je 'd' jednak 1 rezultat se sprema u registar 'f'. Ako je rezultat različit od 0, sljedeća instrukcija se izvodi. Ako je rezultat jednak 0, tada se umjesto sljedeće izvodi NOP instrukcija (što čini ovu instrukciju dvociklusnom).

Broj riječi: 1 Broj ciklusa: 1(2)

Q	taktovi:	

Q1	Q2	Q3	Q4
Dekodiranje	Čitanje registra 'f'	Obrada podataka	Spremanje u odredište

Ako se preskače: (2. Ciklus)

	Q1	Q2	Q3	Q4
	Bez djelovanja	Bez djelovanja	Bez djelovanja	Bez djelovanja
Ρ	rimjer	OVDJE	DECFSZ CN GOTO PETL	T, 1 JA
		NASTAVI		
		•		
		•		
		•		
Ρ	rije instrukcije	PC = adresa	a od OVDJE	
Ν	akon instrukcije	CNT = CNT	· - 1	
		ako je CNT ako je CNT	= 0, PC = adresa 0, PC = adresa	od NASTAVI od OVDJE+1

Dodatak C.Skup instrukcija mikrokontrolera PIC16F84GOTOBezuvjetno grananje

Sintaksa:	[labela] GOTO k
Operand:	0 k 2047
Djelovanje:	kPC<10:0>
	PCLATH<4:3>PC<12:11>
Zastavica:	Nijedna

Kodiranje:

10	1kkk	kkkk	kkkk
----	------	------	------

Opis: GOTO izvodi bezuvjetno grananje. Jedanaest bitova neposrednog adresiranja učitava se u PC bitove <10:0>. Gornji bitovi PC-a učitavaju se iz PCLATH<4:3>. GOTO je dvociklusna instrkcija.

Broj riječi: 1 Broj ciklusa: 2 Q taktovi:

	Q1	Q2	Q3	Q4
1. Ciklus	Dekodiranje	Čitanje konstante 'k'	Obrada podataka	Spremanje u PC
2. Ciklus	Bez djelovanja	Bez djelovanja	Bez djelovanja	Bez djelovanja

Primjer GOTO TAMO Nakon instrukcije PC = adresa od TAMO

INCF Povećanje za 1 registra f

Sintaksa:	[labela] INCF f,d
Operand:	0 f 127
-	d € [0,1]
Djelovanje:	(f) + 1(odredište)
Zastavica:	Z

1

1

Kodiranje:

00 1010 dfff ffff Opis: Sadržaj registra 'f' se uvećava za 1. Ako je 'd' jednak 0 rezultat se sprema u W, a ako je 'd' jednak 1 rezultat se sprema u registar 'f'.

Broj riječi: Broj ciklusa:

Q taktovi:

Q1	Q2	Q3	Q4
Dekodiranje	Čitanje registra 'f'	Obrada podataka	Spremanje u odredište

Primjer	INCF CNT, 1	
Prije instrukcije	CNT = 0xFF	Z = 0
Nakon instrukcije	CNT = 0x00	Z = 1

Dodatak C.	Skup instrukcija mikrokontrolera PIC16F84
INCFSZ	Povećanje za 1 registra f, preskakanje ako je 0

Sintaksa:	[labela] INCFSZ f,d
Operand:	0 f 127
	d € [0,1]
Djelovanje:	(f) + 1 (odredište),
	preskakanje ako je rezultat = 0
Zastavica:	Nijedna

Kodiranje:

00 1111 dfff

Opis: Sadržaj registra 'f' se povećava za 1. Ako je 'd' jednak 0 rezultat se sprema u W, a ako je 'd' jednak 1 rezultat se sprema u registar 'f'. Ako je rezultat različit od 0, sljedeća instrukcija se izvodi. Ako je rezultat jednak 0, tada se umjesto sljedeće izvodi NOP instrukcija (što čini ovu instrukciju dvociklusnom).

Broj riječi: 1 Broj ciklusa: 1(2)

Q taktovi:

Q1	Q2	Q3	Q4
Dekodiranje	Čitanje registra 'f'	Obrada podataka	Spremanje u odredište

Ako se preskače: (2. Ciklus)

Q1	Q2	Q3	Q4
Bez djelovanja	Bez djelovanja	Bez djelovanja	Bez djelovanja

Primjer	OVDJE	INCFSZ CNT, 1 GOTO PETLIA	
	NASTAVI •	0010121201	
	•		
	•		
Prije instrukcije	PC = adresa	od OVDJE	
Nakon instrukcije	CNT = CNT	+ 1	
•	ako je CNT = 0, PC = adresa od NASTAVI		
	ako je CNT	0, PC = adresa od OVDJE +1	

Dodatak C.Skup instrukcija mikrokontrolera PIC16F84IORLWUključivi "ILI" konstante s W

Sintaksa:	[labela] IORLW k
Operand:	0 k 255
Djelovanje:	(W) .OR. k(W)
Zastavica:	Z

1

1

Kodiranje:

kkkk kkkk

11 1000 Opis: Vrši se logčka operacija uključivi "ILI" između sadržaja W registra i osam bitne konstante 'k'. Rezultat se sprema u W registar.

Broj riječi: Broj ciklusa:

Q taktovi:

Q1	Q2	Q3	Q4
Dekodiranje	Čitanje konstante 'k'	Obrada podataka	Spremanje u W

Primjer	IORLW 0x35	
Prije instrukcije	W = 0x9A	
Nakon instrukcije	W = 0xBF	Z = 1

IORWF Uključivi "ILI" W s f

Sintaksa:	[labela] IORWF f,d
Operand:	0 f 127
	d € [0,1]
Djelovanje:	(W) .OR. (f)(odredište)
Zastavica:	Z

Kodiranje:

00 0100 dfff ffff Opis: Uključivi "ILI" W i 'f' registra.

1

1

Ako je 'd' jednak 0 rezultat se sprema u W, a ako je 'd' jednak 1 rezultat se sprema u registar 'f'.

Broj riječi:

Broj ciklusa: Q taktovi:

J taktovi:						
	Q1	Q2	Q3	Q4		
	Dekodiranje	Čitanje registra 'f'	Obrada podataka	Spremanje u odredište		

Primjer	IORWF REZULTAT, ()	
Prije instrukcije	REZULTAT = 0x13	W = 0x91	
Nakon instrukcije	REZULTAT = 0x13	W = 0x93	Z = 1

Dodatak C.Skup instrukcija mikrokontrolera PIC16F84MOVLWPremjesti konstantu u W

Sintaksa: [labela] MOVLW k Operand: 0 k 255 Djelovanje: k(W)

1

1

Zastavica: Nijedna

Kodiranje:

00xx kkkk kkkk

Opis: Osam bitna konstanta 'k' se učitava u W registar.

Broj riječi: Broj ciklusa:

Q taktovi:

Q1	Q2	Q3	Q4
Dekodiranje	Čitanje konstante 'k'	Obrada podataka	Spremanje u W

Primjer	MOVLW 0x5A
Nakon instrukcije	W = 0x5A

MOVF Premjesti f

Sintaksa:	[labela] MOVF f,d
Operand:	0 f 127
-	d
Djelovanje:	(f)(odredište)
Zastavica:	Z

Kodiranje:

00)		1000	dfff	ffff	
		× .		10	¥.(

Opis: Sadržaj registra 'f' premješta se na odredište ovisno o 'd'. Ako je 'd' jednak 0 rezultat se sprema u W, a ako je 'd' jednak 1 rezultat se sprema u sam registar 'f'. 'd' = 1 je korisno za testiranje 'f' registra jer se utječe na Z zastavicu.

Broj riječi: 1 Broj ciklusa: 1

Q taktovi:

	Q1	Q2	Q3	Q4
	Dekodiranje	Čitanje registra 'f'	Obrada podataka	Spremanje u odredište
Primjer		MOVF FSR	, 0	
Ν	akon instrukcij	e W = vrijedno	ost iz FSR registra	Z = 1

Dodatak C.Skup instrukcija mikrokontrolera PIC16F84MOVWFPremjesti W u f

Sintaksa:	[labela] MOVWF f
Operand:	0 f 127
Djelovanje:	(W) (f)
Zastavica:	Nijedna

1

1

Kodiranje:

0000 1fff ffff

00 Opis: Premještanje podatka iz W registra u registar 'f'.

Broj riječi:

Broj ciklusa: Q taktovi:

~						
	Q1	Q2	Q3	Q4		
	Dekodiranje	Čitanje registra 'f'	Obrada podataka	Spremanje u registar 'f'		

Primjer	MOVWF OPTION_REG	
Prije instrukcije	$OPTION_REG = 0xFF$	W = 0x4F
Nakon instrukcije	$OPTION_REG = 0x4F$	W = 0x4F

NOP Bez djelovanja

Sintaksa:	[labela] NOP
Operand:	Nijedan
Djelovanje:	Bez djelovanja
Zastavica:	Nijedna

Kodiranje:

00 0000 0xx0 0000 Opis: Bez djelovanja.

Broj riječi:	1
Broj ciklusa:	1
Q taktovi:	

Q1	Q2	Q3	Q4
Dekodiranje	Bez djelovanja	Bez djelovanja	Bez djelovanja

Primjer NOP

Dodatak C.Skup instrukcija mikrokontrolera PIC16F84RETFIEPovratak iz prekidne rutine

Sintaksa: Operand:	[labela] RETFIE Nijedna
Djelovanje:	TOS PC,
	1 GIE
Zastavica:	Nijedna

Kodiranje:

e an an ger			
00	0000	0000	1001

Opis: Povratak iz prekidne rutine. Sa stoga se skida vrh (TOS) i učitava se u PC. Prekidi su omogućeni postavljanjem GIE bita (INTCON<7>). Ovo je dvociklusna instrukcija.

Broj riječi: 1 Broj ciklusa: 2 Q taktovi:

		Q1	Q2	Q3	Q4
	1. Ciklus	Dekodiranje	Bez djelovanja	Postavljanje GIE bita	Skidanje sa stoga
	2. Ciklus	Bez djelovanja	Bez djelovanja	Bez djelovanja	Bez djelovanja
Primjer RETF		IE			
Ν	lakon prekio	da PC =	TOS GIE =	1	

Dodatak C. Skup instrukcija mikrokontrolera PIC16F84

RETLW Povratak s konstantom u W

[labela] RETLW k
0 k 255
k(W);
TOS PC
Nijedna

1

2

Kodiranje:

1101xxkkkkkkkkOpis: U W registar se učitava osam bitna konstanta 'k'.U PC se učitava vrh stoga (adresa povratka).Ovo je dvociklusna instrukcija.

Broj riječi: Broj ciklusa: Q taktovi:

_		Q1	Q2	Q3	Q4
	1.	Dokodirania	Čitanje konstante	Bez	Spremanje u W, Skidanje sa
	Ciklus	Dekoulianje	'k'	djelovanja	stoga
	2.	Bez	Bez dielovania	Bez	Bez dielovania
	Ciklus	djelovanja	Dez ujelovalija	djelovanja	Dez djelovanja

 Primjer
 CALL TABLICA
 ;W sadrži vrijednost pomaka u tablici

 •
 •

 •
 •

 •
 •

 •
 •

 •
 •

 •
 •

 •
 •

 •
 •

 •
 •

 •
 •

 •
 •

 •
 •

 •
 •

 •
 •

 •
 •

 •
 •

 •
 •

 •
 •

 •
 •

 •
 •

 •
 •

 •
 •

 •
 •

 •
 •

 •
 •

 •
 •

 •
 •

 •
 •

 •
 •

 •
 •

 •
 •

 •
 •

 •
 •

 •
 •

 •
 •

 •
 •

 <

Dodatak C. Skup instrukcija mikrokontrolera PIC16F84

RETURN Povratak iz potprograma

Sintaksa:	[labela] RETURN	
Operand:	Nijedan	
Djelovanje:	TOS PC	
Zastavica:	Nijedna	

Kodiranje:

00 0000 0000 1000 Opis: Povratak iz potprograma. U PC se skida adresa s vrha stoga (TOS). Ovo je dvociklusna instrukcija.

Broj riječi:

Broj ciklusa:

Q taktovi:

Br. ciklusa	Q1	Q2	Q3	Q4
1st Cycle	Dekodiranje	Bez djelovanja	Bez djelovanja	Skidanje sa stoga
2nd Cycle	Bez djelovanja	Bez djelovanja	Bez djelovanja	Bez djelovanja

Primjer	RETURN
Nakon prekida	PC = TOS

1

2

RLF	Rotiranje registra f ulijevo kroz "Carry"
Sintaksa:	[labela] RLF f,d
Operand:	0 f 127 d€[0,1]
Djelovanje: Zastavica:	Vidi opis C

Kodiranje:

00 1101 dfff ffff Opis: Sadržaj registra 'f' rotira se jedan bit ulijevo kroz "Carry" zastavicu. Ako je 'd' jednak 0 rezultat se sprema u W registar, a ako je 'd' jednak 1 rezultat se sprema u registar 'f'.

C < Registar f <

1

1

Broj riječi: Broj ciklusa:

Q taktovi:

Q1	Q2	Q3	Q4
Dekodiranje	Čitanje registra 'f'	Obrada podataka	Spremanje u odredište

Primjer	RLF REG1,0		
Prije instrukcije	REG1 = 1110 0110	C = 0	
Nakon instrukcije	REG1 = 1110 0110	W = 1100 1100	C = 1

Dodatak C.Skup instrukcija mikrokontrolera PIC16F84**RRF**Rotiranje registra f udesno kroz "Carry"

Sintaksa:	[labela] RRF f d
onnanou.	
Operand:	0 f 127
•	d € [0,1]
Djelovanje:	Vidi opis
Zastavica:	C

Kodiranje:

00 1100 dfff ffff Opis: Sadržaj registra 'f' rotira se jedan bit udesno kroz "Carry" zastavicu. Ako je 'd' jednak 0 rezultat se sprema u W registar, a ako je 'd' jednak 1 rezultat se sprema u registar 'f'.

C Registar f

1

1

Broj riječi: Broj ciklusa:

Q taktovi:

9					
	Q1	Q2	Q3	Q4	
	Dekodiranje	Čitanje registra 'f'	Obrada podataka	Spremanje u odredište	

Primjer	RRF REG1,0		
Prije instrukcije	REG1 = 1110 0110	$\mathbf{C} = 0$	
Nakon instrukcije	REG1 = 1110 0110	W = 0111 0011	C = 0

SLEEP

Sintaksa: Operand:	[labela] SLEEP Niiedan	
Djelovanje:	00h WDT,	
	0 WDT predjelilo,	
	1 <u>70</u> ,	
	0 <u>PD</u>	
Zastavica:	TO, PD	

Kodiranje:

00	0000	0110	0011

Opis: "Power-down" status bit (PD) je obrisan. "Time-out" status bit (TO) je postavljen. "Watchdog Timer" i njegovo predjelilo su obrisani. Procesor odlazi u SLEEP mod sa zaustavljenim oscilatorom.

Broj riječi: 1 Broj ciklusa: 1 Q taktovi:

	Q1	Q2	Q3	Q4
	Dekodiranje	Bez djelovanja	Bez djelovanja	Odlazak u "Sleep"

Primjer: SLEEP
Dodatak C. Sku	up instrukcija mikrokont	trolera PIC16F84	
SUBLW	Oduzimanje W od ko	nstante	
Sintaksa: Operand: Djelovanje: Zastavica:	[labela] SUBLW k 0 k 255 k - (W) (W) C, DC, Z		
Kodiranje: 11 11 Opis: Sadržaj W dvojnog komple Rezultat se spre	0x kkkk kkkk / registra se oduzima (r menta) od osam bitne ema u W registar.] metoda konstante 'k'.	
Broj riječi: Broj ciklusa: Q <u>taktovi:</u>	1		
Q1	Q2	Q3	Q4
Dekodiranje	Citanje konstante 'k'	Obrada podataka	Spremanje u W
Primjer 1: Prije instrukcije Nakon instrukcij	SUBLW 0x02 W = 1 W = 1	C = ? C = 1; rezultat je p	Z = ? ozitivan Z = 0
Primjer 2: Prije instrukcije Nakon instrukcij	W = 2 W = 0	C = ? C = 1; rezultat je n	Z = ? ula Z = 1
Primjer 3: Prije instrukcije Nakon instrukcij	W = 3 W = 0xFF	C = ? C = 0; rezultat je n	Z = ? egativan Z = 0

Dodatak C. Skup instrukcija mikrokontrolera PIC16F84

SUBWE	Oduzimanje W	od f

Sintaksa:	[labela] SUBWF f,d
Operand:	0 f 127
	d
Djelovanje:	(f) - (W) (odredište)
Zastavica:	C, DC, Z

Kodiranje:

	00 (0010 d	fff ffff	
--	------	--------	----------	--

1

1

Opis: Oduzimanje sadržaja (metodom dvojnog komplementa) W registra od sadržaja registra 'f'. Ako je 'd' jednak 0 rezultat se sprema u W registar, a ako je 'd' jednak 1 rezultat se sprema u registar 'f'.

Broj riječi: Broj ciklusa:

Q taktovi:

	Q1	Q2	Q	3	Q4	7
	Dekodiranje	Čitanje registra 'f'	Obrada p	odataka	Spremanje u odredište	
Ρ	rimjer 1:	SUBWF RE	G1,1			—
Ρ	rije instrukcije	REG1 = 3	W = 2	C = ?		Z = ?
Ν	akon instrukcij	e REG1 = 1	W = 2	C = 1; r	ezultat je pozitivan	Z = 0
P P	rimjer 2: rije instrukcije	REG1 = 2	W = 2	C = ?		Z = ?
IN	akon instrukcij	e REG1 = 0	VV = 2	C = 1; r	ezultat je nula	Z = 1
P P N	rimjer 3: rije instrukcije akon instrukcij	REG1 = 1 e REG1 = 0xF	W = 2 F W = 2	C = ? C = 0; r	ezultat je negativan	Z = ? Z = 0
SWAPFZamjena bitova u fSintaksa:[labela] SWAPF f,dOperand:0 f0 f127d \in [0,1]Djelovanje:(f<3:0>)(odredište<7:4>), (f<7:4>)(odredište<3:0>)Zastavica:Nijedna						
Kodiranje: 00 1110 dfff ffff Opis: Gornja i donja četiri bita registra 'f' mijenjaju mjesta. Ako je 'd' jednak 0 rezultat se sprema u W registar, a ako je 'd' jednak 1 rezultat se sprema u registar 'f'.						
B B Q	roj riječi: roj ciklusa: taktovi:	1 1				_
	Q1	Q2	Q	3	Q4	
	Dekodiranje	Citanje registra 'f'	Obrada p	odataka	Spremanje u odredište	1

Primier	SWAPF REG, 0	
Prije instrukcije	REG1 = 0xA5	
Nakon instrukcije	REG1 = 0xA5	W = 0x5A

XORLW Isključivo ili konstante s W

Sintaksa:	[labela] XORLW k
Operand:	0 k 255
Djelovanje:	(W) .XOR. k (W)
Zastavica:	Z

Kodiranje:

111010kkkkkkkkOpis: Isključivo "ILI" operacija između sadržajaW registra i osam bitne konstante 'k'.Rezultat se sprema u W registar.

Broj riječi:

Broj ciklusa:

Q taktovi:

Q1	Q2	Q3	Q4
Dekodiranje	Čitanje konstante 'k'	Obrada podataka	Spremanje u W

Primjer:	XORLW 0xAF
Prije instrukcije	W = 0xB5
Nakon instrukcije	W = 0x1A

1

1

XORWF	lsključivo "ILI" W s f
Sintaksa:	[labela] XORWF f,d
Operand:	0 f 127 d€[0,1]
Djelovanje: Zastavica:	(W) .XOR. (f)(odredište) Z

Kodiranje:

00 0110 dfff ffff

1

1

Opis: Isključivo "ILI" između W i 'f' registra. Ako je 'd' jednak 0 rezultat se sprema u W registara, a ako je 'd' jednak 1 rezultat se sprema u registar 'f'.

Broj riječi: Broj ciklusa:

Q taktovi:

Q1	Q2	Q3	Q4
Dekodiranje	Čitanje registra 'f'	Obrada podataka	Spremanje u odredište

Primjer	XORWF REG 1	
Prije instrukcije	REG = 0xAF	W = 0xB5
Nakon instrukcije	REG = 0x1A	W = 0xB5

Dodatak D. LITERATURA

- [1] PIC16F84 Data Sheet, Microchip Technology Inc., 1998.
- [2] MPLAB User's Guide, Microchip Technology Inc., 2000.
- [3] PCF8591P Data Sheet, Philips Semiconductors, 2003.
- [4] I2C Manual, Philips Semiconductors, 2003.
- [5] PVC160203PYL01 Data Sheet, Picvue Electronics Co., Ltd.
- [6] S547AP Data Sheet, Lite-on Electronics Inc.